莫比乌斯反演

  PoPoQQQ讲义第4题

  题解:http://www.cnblogs.com/jianglangcaijin/archive/2013/11/27/3446169.html

  感觉两次sqrt(n)的枚举是亮点……

RE:汗- -b 10^7是8位数,开数组少打了一个0……

 /**************************************************************
Problem: 2154
User: Tunix
Language: C++
Result: Accepted
Time:8780 ms
Memory:167292 kb
****************************************************************/ //BZOJ 2154
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
using namespace std; int getint(){
int v=,sign=; char ch=getchar();
while(ch<''||ch>'') {if (ch=='-') sign=-; ch=getchar();}
while(ch>=''&&ch<='') {v=v*+ch-''; ch=getchar();}
return v*=sign;
}
/*******************tamplate********************/
const int N=,P=;
typedef long long LL;
LL prime[N],mu[N];
bool check[N];
LL n,m;
void getmu(int n){
int tot=;
mu[]=;
for(int i=;i<n;i++){
if (!check[i]){
prime[tot++]=i;
mu[i]=-;
}
rep(j,tot){
if (i*prime[j]>n) break;
check[i*prime[j]]=;
if (i%prime[j]) mu[i*prime[j]]=-mu[i];
else{
mu[i*prime[j]]=;
break;
}
}
}
F(i,,n) mu[i]=(mu[i-]+mu[i]*i%P*i%P)%P;
}
inline LL Sum(LL n,LL m){
n=n*(n+)/%P;
m=m*(m+)/%P;
return n*m%P;
}
inline LL f(LL n,LL m){
LL ans=,i,last;
for(i=;i<=n;i=last+){
last=min(n/(n/i),m/(m/i));
ans=(ans+(mu[last]-mu[i-])%P*Sum(n/i,m/i)%P)%P;
}
return ans;
}
int main(){
// freopen("input.txt","r",stdin);
n=getint(); m=getint();
if(n>m) swap(n,m);
getmu(m);
LL ans=,i,last;
for(i=;i<=n;i=last+){
last=min(n/(n/i),m/(m/i));
ans=(ans+(i+last)*(last-i+)/%P*f(n/i,m/i)%P)%P;
}
if (ans<) ans+=P;
printf("%lld\n",ans);
return ;
}

2154: Crash的数字表格

Time Limit: 20 Sec  Memory Limit: 259 MB
Submit: 1327  Solved: 529
[Submit][Status][Discuss]

Description


天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple)。对于两个正整数a和b,LCM(a,
b)表示能同时被a和b整除的最小正整数。例如,LCM(6, 8) =
24。回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格。每个格子里写了一个数字,其中第i行第j列的那个格子里
写着数为LCM(i, j)。一个4*5的表格如下: 1 2 3 4 5 2 2 6 4 10 3 6 3 12 15 4 4 12 4 20
看着这个表格,Crash想到了很多可以思考的问题。不过他最想解决的问题却是一个十分简单的问题:这个表格中所有数的和是多少。当N和M很大
时,Crash就束手无策了,因此他找到了聪明的你用程序帮他解决这个问题。由于最终结果可能会很大,Crash只想知道表格里所有数的和mod
20101009的值。

Input

输入的第一行包含两个正整数,分别表示N和M。

Output

输出一个正整数,表示表格中所有数的和mod 20101009的值。

Sample Input

4 5

Sample Output

122
【数据规模和约定】
100%的数据满足N, M ≤ 107。

HINT

Source

[Submit][Status][Discuss]

【BZOJ】【2154】Crash的数字表格的更多相关文章

  1. 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)

    BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...

  2. [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)

    题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑N​y=1∑M​lim(x, ...

  3. [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)

    [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...

  4. BZOJ 2154: Crash的数字表格 [莫比乌斯反演]

    2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][ ...

  5. Bzoj 2154: Crash的数字表格(积性函数)

    2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MB Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least ...

  6. bzoj 2154 Crash的数字表格(莫比乌斯反演及优化)

    Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如 ...

  7. 【刷题】BZOJ 2154 Crash的数字表格

    Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如 ...

  8. BZOJ 2154 Crash的数字表格

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2154 题意: 思路: i64 mou[N]; void init(int N){    ...

  9. ●BZOJ 2154 Crash的数字表格

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2154 题解: 莫比乌斯反演. 题意还是很清楚的,就不赘述了. 显然有 $ANS=\sum_{ ...

  10. BZOJ 2154 Crash的数字表格 ——莫比乌斯反演

    求$\sum_{i=1}^n\sum_{j=1}^n lcm(i,j)$ 枚举因数 $ans=\sum_{d<=n} F(d) * d$ $F(d)$表示给定范围内两两$\sum_{gcd(i, ...

随机推荐

  1. iOS-画板的实现

    先上一张效果图,有看下去的动力 再来一张工程图片 好,首先是对线的实体的封装,在LineEntity.h文件中创建一个点的数组 然后在LineEntity.m文件中,在初始化方法中给points变量开 ...

  2. UIView的frame的扩展分类,轻松取出x、y、height、width等值

    一.引言: 在ios开发中,就界面搭建.控件布局时,都会很恶心的通过很长的代码才能取出控件的x.y.height.width等值,大大降低了开发效率.那为了省略这些恶心的步骤,小编在这里给UIView ...

  3. 【学习笔记】【C语言】break和continue

    1.使用 break: 1.使用场合 1> switch语句:退出整个switch语句 2> 循环结构:退出整个循环语句   * while   * do while   * for 2. ...

  4. 4月12日学习笔记——jQuery事件

    下面是在 jQuery 中最常使用的 bind()方法举例:$("#testDiv4").bind("click", showMsg); 我们为 id 是 te ...

  5. 会场安排问题—NYOJ14

    时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 学校的小礼堂每天都会有许多活动,有时间这些活动的计划时间会发生冲突,需要选择出一些活动进行举办.小刘的工作就是安排学校 ...

  6. AngularJS(15)-依赖注入

    AngularJS 依赖注入 什么是依赖注入 wiki 上的解释是:依赖注入(Dependency Injection,简称DI)是一种软件设计模式,在这种模式下,一个或更多的依赖(或服务)被注入(或 ...

  7. [大牛翻译系列]Hadoop(2)MapReduce 连接:复制连接(Replication join)

    4.1.2 复制连接(Replication join) 复制连接是map端的连接.复制连接得名于它的具体实现:连接中最小的数据集将会被复制到所有的map主机节点.复制连接有一个假设前提:在被连接的数 ...

  8. sql语句中like匹配的用法详解

    在SQL结构化查询语言中,LIKE语句有着至关重要的作用. LIKE语句的语法格式是:select * from 表名 where 字段名 like 对应值(子串),它主要是针对字符型字段的,它的作用 ...

  9. robots.txt用法

    主要作用是告诉蜘蛛爬虫该网站下哪些内容能抓取,哪些内容不能抓取.虽然可以没有robots.txt这个文件,默认就抓取该网站的所有文件,对搜索引擎爬虫没有任何的影响,但是如果你想控制蜘蛛的检索间隔,你就 ...

  10. HTML5 input新增的几种类型(数字、日期、颜色选取、范围)

    你可能已经听说过,HTML5里引入了几种新的input类型.在HTML5之前,大家熟知的input类型包括:text(输入框),hidden(隐藏域),submit(提交按钮)等.而HTML5到来之后 ...