Multiple View Geometry in Computer Vision Second Edition by Richard Hartley 读书笔记(二)
//
Chapter 2介绍的是2d下的投影变换,摘录下了以下定理
Result 2.1. The point x lies on the line l if and only if xTl = 0. (xTl = lTx = x.l )
Result 2.2. The intersection of two lines l and l′ is the point x = l × l′.
Result 2.4. The line through two points x and x′ is l = x × x′.
Result 2.6. Duality principle. To any theorem of 2-dimensional projective geometry there corresponds a dual theorem, which may be derived by interchanging the roles of points and lines in the original theorem. “点和直线在射影平面上的地位是对称的” 引述自《解析几何》丘维声。由之上3个定理也可以看出,两者可以直接交换得到另一个等式。它们互称为对偶命题4
Result2.7. The line l tangent to C at a point x on C is given by l=Cx.
Result2.13. Under a point transformation x′ = Hx, a conic C transforms to C′ = H−TCH−1.
Result 2.14. Under a point transformationx′ = Hx, a dual conic C∗ transforms toC∗′ = HC∗HT.
Result 2.16. The number of functionally independent invariants is equal to, or greater than, the number of degrees of freedom of the configuration less the number of degrees of freedom of the transformation.
Result 2.17. The line at infinity, l∞, is a fixed line under the projective transformation H if and only if H is an affinity.
Result 2.21. The circular points, I, J, are fixed points under the projective transformation H if and only if H is a similarity.
Result 2.22. The dual conic C∗∞ (a degenerate (rank 2) line conic C∗∞ = IJT + JIT )is fixed under the projective transformation H if and only if H is a similarity.
Result 2.23. Once the conic C∗∞ is identified on the projective plane then Euclidean angles may be measured by (2.22).
Result 2.24. Lines l and m are orthogonal if lTC∗∞m = 0.
Result 2.25. Once the conic C∗∞ is identified on the projective plane then projective distortion may be rectified up to a similarity.
Conic:
equation of a conic in homogeneous coordinates is \(ax^2 + bx + c = 0\)
in matrix form: \(x^TCx = 0\)
\[ C = \begin{bmatrix} a&b/2&d/2 \\ b/2&c&e/2 \\ d/2&e/2&f \end{bmatrix} \]
注意,这个矩阵是对称矩阵,且有6个参数,有1个用于缩放,那么就有5 degrees of freedom(这个概念后面也用得很多),因此5个点可以确定一个conic
A hierarchy of transformations:
应该是变换群的概念,例如“平面的所有正交变换组成的集合H是平面的一个变换群,称H为平面的正交变换群。”不过本书中提出 “An isometry is orientation-preserving if the upper left hand 2 × 2 matrix has determinant 1. Orientation-preserving isometries form a group, orientation-reversing ones do not. This distinction applies also in the case of similarity and affine transformations which now follow. ”朝向不变的才构成一个群,不知道为什么,待解决。
Isometries
\[ \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix}
= \begin{bmatrix} \epsilon \cos \theta & -\sin\theta & t_x
\\ \epsilon \cos \theta & \cos\theta & t_y
\\ 0 & 0 & 1
\end{bmatrix}
\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \]
几何上的表现tx,ty是沿x轴、y轴的平移变换,R是旋转θ
它的Invariants 翻译过来应该是度量性质,包括length, angle, area
Similarity transformations
\[ \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix}
= \begin{bmatrix} s \cos \theta & -s\sin\theta & t_x
\\ s \cos \theta & s\cos\theta & t_y
\\ 0 & 0 & 1
\end{bmatrix}
\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \]
增加了s,几何上表现是放缩
相似性质,高中学过,angle, ratio of two lengths,要注意以前提出的length就不是这里的invariants了
Affine transformations
\[ \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix}
= \begin{bmatrix} a_{11} & a_{12} & t_x
\\ a_{21} & a_{22} & t_y
\\ 0 & 0 & 1
\end{bmatrix}
\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \]
几何上表现为沿某两垂直方向进行拉伸或压缩
仿射性质,包括Parallel lines, Ratio of lengths of parallel line segments, Ratio of areas.
Projective transformations
Projective transformations
\[ x' = H_Px
= \begin{bmatrix} A & t
\\ \nu^T & v
\end{bmatrix}
x \]
代数上表现为把无穷远线\( (0,0,1) \)
变换到一根普通直线\( (a,b,c) \),几何上表现为平行线于投影面上相交于一可见点(无穷远点)
射影性质,包括a ratio of ratios or cross ratio of lengths on a line , 即交比。注意并不是Ratio of lengths on a line(仿射性质)。
那么,一个投影变换就可以进行分解,如下图,我们需要什么样的性质,只需要退回到相应的变换之前。例如,如果想要测量投影图中的长度比,只需返回到相似变换。
\[ H = H_SH_AH_P
= \begin{bmatrix} sR & t
\\ 0^T & 1
\end{bmatrix}
\begin{bmatrix} K & 0
\\ 0^T & 1
\end{bmatrix}
\begin{bmatrix} I & 0
\\ \nu^T & v
\end{bmatrix}
= \begin{bmatrix} A & t
\\ \nu^T & v
\end{bmatrix}
\]
各变换总结

2.5 接下来,书中从1D角度介绍了Cross Ratio、Concurrent lines。
2.6 以及1D、2D投影面的拓扑,完全没理解,,待补充。
2.7 介绍了如何从图像获取仿射、相似、度量性质
Metric rectification using \(C_*^∞\)
\begin{align*}
{C_*^\infty}' & = (H_PH_AH_S)C_*^\infty(H_PH_AH_S)^T = (H_PH_A)C_*^\infty(H_SH_S^T)\\
& = (H_PH_A)C_*^\infty(H_SH_S^T) \\
& =\begin{bmatrix} KK_T & KK_T\nu
\\ \nu^TKK_T & \nu^TKK_T\nu
\end{bmatrix}
\end{align*}
- 例1,把出现于图像中的无穷远线(2组平行线->两个无穷远点->确定无穷远线)投影回(0,0,1),就可以去除Projective Distortion。注意,一条直线有两个自由度,我们由Projective(8 def),Affine(6 def)之间的差也可以知道需要两个。
- 例2,已知length ratio,计算投影后的length ratio,1D坐标系,由length ratio得出 . homogeneous coordinates,再得出 H2*2,对应(1,0)的即为一个消失点。
- 例3,已知l的cross ratio,利用其得到一个相同投影中心下投影出的线,连线得出投影中心O,过O并与l平行的线交于无穷远点,经投影,此无穷远点(1,0)变换到(a,b),与l’交点即为无穷远点
- 例4,Projective Distortion已去除,由2 degrees of freedom of the circular points 去除Affine Distortion:垂线\( l′ T C_∗^∞ ′ m′ = 0 \),因为Projective Distortion已去除,v=0,那么
\[ \begin{pmatrix} l_1' & l_2' & l_3'
\end{pmatrix}
\begin{bmatrix} KK^T & 0
\\ 0^T & 0
\end{bmatrix}
\begin{pmatrix} m_1' \\ m_2' \\ m_3'
\end{pmatrix}=0
\]
两组垂线即可确定K:two such orthogonal line pairs provide two constraints which may be stacked to give a 2 × 3 matrix with s determined as the null vector ,rank为2,m为3,3-2=rank s,貌似,详见by Cholesky decomposition, section A4.2.1(p582) 也可以由以下确定:Alternatively, the two constraints required for metric rectification may be obtained from an imaged circle or two known length ratios. In the case of a circle, the image conic is an ellipse in the affinely rectified image, and the intersection of this ellipse with the (known) l∞ directly determines the imaged circular points. - 例5,Projective Distortion未去除,仍由垂线\( l′ T C_∗^∞ ′ m′ = 0 \),公式\( (l^1m^1, (l^1m^2 + l^2m^1)/2, l^2m^2, (l^1m^3 + l^3m^1)/2, (l^2m^3 + l^3m^2)/2, l^3m^3) c = 0 \)矩阵形式1*6 6*1,类似例4,5个这样的限制形成5*6矩阵,c, and hence C∗∞, is obtained as the null vector.
注意,例5由一步直接到位,例4经过两步得到同样的效果,叫:This two-step approach is termed stratified
2.8 conics更多的性质
极点,极线,共轭
仿射、投影下对conics的分类:

投影变换下:any conic is equivalent under projective transforma- tion to one with a diagonal matrix. 证明过程见书
注意,仿射变换下:hyperbola, ellipse and parabola ,欧式分类也一样,因为只由他们与无穷远线的关系确定

2.9 固定的点和线,
由l∞ and the circular points ,可以发现有的点和线在一个投影变换下是固定的,实际上,矩阵的特征向量对应一个固定点,\( He = λe \) ,特征向量*特征值还是属于\( (x1,x2,x3) \),然后书中考察了相似矩阵(固定点即为circular points )、仿射矩阵的特征值和特征向量。
Multiple View Geometry in Computer Vision Second Edition by Richard Hartley 读书笔记(二)的更多相关文章
- Multiple View Geometry in Computer Vision Second Edition by Richard Hartley 读书笔记(一)
var bdots = "../" var sequence = [ 'l1', 'l2', 'l3', 'l4' ]; Chapter1是个总览,引出了射影几何的概念,通过在欧式 ...
- Multiple View Geometry in Computer vision 1.1节部分翻译
1.1简介—无处不在的投影几何 我们都熟悉射影变换.当我们看一幅图,我们看到的方形不是方形,或圆形不是圆形.平面立体映射到图片上的变换是一个投影变换的例子. 因此投影变换时保留的几何属性是什么呢?当然 ...
- Computer Vision Algorithm Implementations
Participate in Reproducible Research General Image Processing OpenCV (C/C++ code, BSD lic) Image man ...
- Computer Vision Resources
Computer Vision Resources Softwares Topic Resources References Feature Extraction SIFT [1] [Demo pro ...
- Computer Vision Tutorials from Conferences (3) -- CVPR
CVPR 2013 (http://www.pamitc.org/cvpr13/tutorials.php) Foundations of Spatial SpectroscopyJames Cogg ...
- paper 156:专家主页汇总-计算机视觉-computer vision
持续更新ing~ all *.files come from the author:http://www.cnblogs.com/findumars/p/5009003.html 1 牛人Homepa ...
- Learning ROS for Robotics Programming Second Edition学习笔记(五) indigo computer vision
中文译著已经出版,详情请参考:http://blog.csdn.net/ZhangRelay/article/category/6506865 Learning ROS for Robotics Pr ...
- Analyzing The Papers Behind Facebook's Computer Vision Approach
Analyzing The Papers Behind Facebook's Computer Vision Approach Introduction You know that company c ...
- Computer Vision Tutorials from Conferences (2) -- ECCV
ECCV 2012 (http://eccv2012.unifi.it/program/tutorials/) Vision Applications on Mobile using OpenCVGa ...
随机推荐
- hadoop集群基本配置
最近在学习hadoop.网上具体过程很多,我就说说简单过程和注意问题. 环境:宿主机(windows64),虚拟机(centos64). 准备软件: 1.Vmware——虚拟机 2.centos镜像文 ...
- Spark Mllib逻辑回归算法分析
原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3816289.html 本文以spark 1.0.0版本MLlib算法为准进行分析 一.代码结构 逻辑回归 ...
- @QueryParam和@PathParam比较
来源:http://jackyrong.iteye.com/blog/1128364 1 先来看@queryparam Path("/users") public class Us ...
- 李洪强iOS开发之initWithFrame,initWithCoder和aweakFormNib
1 initWithFrame 通过代码创建控件的话用这个方法设置 2 initWithCoder(先执行) 与从xib加载有关系的 在此方法里面设置原有子控件的值是不行的,因为还没有连好线 3 ...
- SaaS系列介绍之十五: SaaS知识重用
1 建立并积累自己的开发体系 遵行业界的规定又有自己的特色是我们所追求的目标.成功的软件公司都有丰富而可复用的代码组件,几行代码在单个系统里可能无足轻重,但一旦可在大量的系统中可重复使用那就是价值不菲 ...
- 【Linux高频命令专题(8)】五大查询命令
find 格式 find 路径 -命令参数 [输出形式] 路径:告诉find在哪儿去找你要的东西 命令参数:参考下面 输出形式:输出形式很多,-print,-printf,-print,-exec,- ...
- iOS ARC下dealloc过程及.cxx_destruct的探究
前言 这次探索源自于自己一直以来对ARC的一个疑问,在MRC时代,经常写下面的代码: 1 2 3 4 5 6 7 8 9 - (void)dealloc { self.array = nil; ...
- SQL Server数据库多种方式查找重复记录
摘要:SQL Server是一个关系数据库管理系统,SQL Server数据库的应用是很多的,SQL Server数据库赢得了广大用户的青睐,本文将主要为大家介绍关于SQL Server数据库中查找重 ...
- android从应用到驱动之—camera(1)---程序调用流程
一.开篇 写博客还得写开篇介绍,可惜,这个不是我所擅长的.就按我自己的想法写吧. 话说camera模块,从上层到底层一共包含着这么几个部分: 1.apk------java语言 2.camera的ja ...
- spring boot 1.4默认使用 hibernate validator
spring boot 1.4默认使用 hibernate validator 5.2.4 Final实现校验功能.hibernate validator 5.2.4 Final是JSR 349 Be ...