FFT结果的物理意义
图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对 于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的谱。从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶逆变换是将图像的频率分布函数变换为灰度分布函数。
这样通过观察傅立叶变换后的频谱图,也叫功率图,我们首先就可以看出,图像的能量分布,如果频谱图中暗的点数更多,那么实际图像是比较柔和的(因为各点与
邻域差异都不大,梯度相对较小),反之,如果频谱图中亮的点数多,那么实际图像一定是尖锐的,边界分明且边界两边像素差异较大的。对
频谱移频到原点以后,可以看出图像的频率分布是以原点为圆心,对称分布的。将频谱移频到圆心除了可以清晰地看出图像频率分布以外,还有一个好处,它可以分
离出有周期性规律的干扰信号,比如正弦干扰,一副带有正弦干扰,移频到原点的频谱图上可以看出除了中心以外还存在以某一点为中心,对称分布的亮点集合,这
个集合就是干扰噪音产生的,这时可以很直观的通过在该位置放置带阻滤波器消除干扰。另外我还想说明以下几点:
1、图像经过二维傅立叶变换后,其变换系数矩阵表明:
若变换矩阵Fn原点设在中心,其频谱能量集中分布在变换系数短阵的中心附近(图中阴影区)。若所用的二维傅立叶变换矩阵Fn的原点设在左上角,那么图像信号能量将集中在系数矩阵的四个角上。这是由二维傅立叶变换本身性质决定的。同时也表明一股图像能量集中低频区域。
2 、变换之后的图像在原点平移之前四角是低频,最亮,平移之后中间部分是低频,最亮,亮度大说明低频的能量大(幅角比较大)。
从计算机处理精度上就不难理解,一个长度为N的信号,最多只能有N/2+1个不同频率,再多的频率就超过了计算机所能所处理的精度范围)
X[]数组又分两种,一种是表示余弦波的不同频率幅度值:Re X[],另一种是表示正弦波的不同频率幅度值:Im
X[],Re是实数(Real)的意思,Im是虚数(Imagine)的意思,采用复数的表示方法把正余弦波组合起来进行表示,但这里我们不考虑复数的其
它作用,只记住是一种组合方法而已,目的是为了便于表达(在后面我们会知道,复数形式的傅立叶变换长度是N,而不是N/2+1)。
用Matlab实现快速傅立叶变换
FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这
就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。
虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点来做FFT。
现在就根据实际经验来说说FFT结果的具体物理意义。一个模拟信号,经过ADC采样之后,就变成了数字信号。采样定理告诉我们,采样频率要大于信号频率的两倍,这些我就不在此啰嗦了。
采样得到的数字信号,就可以做FFT变换了。N个采样点,经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT运算,通常N取2的整数次方。
假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就对应着一个频率点。这个点的模值,就是该频率值下的幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。而第一个点就是直流分量,它的模值就是直流分量的N倍。
而每个点的相位呢,就是在该频率下的信号的相位。第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的
第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。例如某点n所表示的频率为:Fn=(n-1)*Fs/N。由上面的公式可以看出,Fn所能分辨到频率为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号并做FFT,则结果可以分析到0.5Hz。如果要提高频率分辨力,则必须增加采样点数,也即采样时间。频率分辨率和采样时间是倒数关系。
假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是An=根号a*a+b*b,相位就是Pn=atan2(b,a)。根据以上的结果,就可以
计算出n点(n≠1,且n<=N/2)对应的信号的表达式为:An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An
/N*cos(2*pi*Fn*t+Pn)。对于n=1点的信号,是直流分量,幅度即为A1/N。由于FFT结果的对称性,通常我们只使用前半部分的结果,即小于采样频率一半的结果。
下面以一个实际的信号来做说明。假设我们有一个信号,它含有2V的直流分量,频率为50Hz、相位为-30度、幅度为3V的交流信号,以及一个频率
(f0)为75Hz、相位为90度、幅度为1.5V的交流信号。用数学表达式就是如下:S=2+3*cos(2*pi*50*t-
pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180)。式中cos参数为弧度,所以-30度和90度要分别换算成弧度。我们
以256Hz的采样率对这个信号进行采样,总共采样256点。按照我们上面的分析,Fn=(n-1)*Fs/N,我们可以知道,每两个点之间的间距就是
1Hz,第n个点的频率就是n-1。我们的信号有3个频率:0Hz、50Hz、75Hz,应该分别在第1个点、第51个点、第76个点上出现峰值,其它各
点应该接近0。实际情况如何呢?我们来看看FFT的结果的模值如图所示。
图1 FFT结果
从图中我们可以看到,在第1点、第51点和第76点附近有比较大的值。我们分别将这三个点附近的数据拿上来细看:
1点: 512+0i
2点: -2.6195E-14 - 1.4162E-13i
3点: -2.8586E-14 - 1.1898E-13i
50点:-6.2076E-13 - 2.1713E-12i
51点:332.55 - 192i
52点:-1.6707E-12 - 1.5241E-12i
75点:-2.2199E-13 -1.0076E-12i
76点:3.4315E-12 + 192i
77点:-3.0263E-14 +7.5609E-13i
很明显,1点、51点、76点的值都比较大,它附近的点值都很小,可以认为是0,即在那些频率点上的信号幅度为0。接着,我们来计算各点的幅度值。分别计算这三个点的模值,结果如下:
1点: 512
51点:384
76点:192
按照公式,可以计算出直流分量为:512/N=512/256=2;50Hz信号的幅度为:384/(N/2)=384/(256/2)=3;75Hz信号的幅度为192/(N/2)=192/(256/2)=1.5。可见,从频谱分析出来的幅度是正确的。
然后再来计算相位信息。直流信号没有相位可言,不用管它。先计算50Hz信号的相位,atan2(-192,
332.55)=-0.5236,结果是弧度,换算为角度就是180*(-0.5236)/pi=-30.0001。再计算75Hz信号的相
位,atan2(192,
3.4315E-12)=1.5708弧度,换算成角度就是180*1.5708/pi=90.0002。可见,相位也是对的。根据FFT结果以及上面的
分析计算,我们就可以写出信号的表达式了,它就是我们开始提供的信号。
总结:假设采样频率为Fs,采样点数为N,做FFT之后,某一点n(n从1开始)表示的频率为:Fn=(n-1)*Fs/N;该点的模值除以N/2就是对
应该频率下的信号的幅度(对于直流信号是除以N);该点的相位即是对应该频率下的信号的相位。相位的计算可用函数atan2(b,a)计算。
atan2(b,a)是求坐标为(a,b)点的角度值,范围从-pi到pi。要精确到xHz,则需要采样长度为1/x秒的信号,并做FFT。要提高频率分
辨率,就需要增加采样点数,这在一些实际的应用中是不现实的,需要在较短的时间内完成分析。解决这个问题的方法有频率细分法,比较简单的方法是采样比较短
时间的信号,然后在后面补充一定数量的0,使其长度达到需要的点数,再做FFT,这在一定程度上能够提高频率分辨力。具体的频率细分法可参考相关文献.
PS:这里解释下前面讲的假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。而第一个点就是直流分量,它的模值就是直流分量的N倍。这句话应该仅仅对sin,cos函数有效吧。如果时域上为x(n)=1,0<=n<=6,其他n均为0,16点fft显然不满足这个条件。
而对于cos函数,拿他举得例子看S(n)=2+3*cos(2*pi*50*n-
pi*30/180)+1.5*cos(2*pi*75*n+pi*90/180)以256Hz的采样率对这个信号进行采样,总共采样256点。按照我们
上面的分析,Fn=(n-1)*Fs/N,我们可以知道,每两个点之间的间距就是1Hz,第n个点的频率就是n-1。我们的信号有3个频率:0Hz、
50Hz、75Hz,应该分别在第1个点、第51个点、第76个点上出现峰值,其它各点应该接近0。实际情况如何呢?
更具DFT的公式:
因为采样频率为256hz,
所以x(n)=s(n/256)=2+3*cos(2*pi*50*n/256-pi*30/180)+1.5*cos(2*pi*75*n/256+pi*90/180)
将x(n)带入,化简得:
最后利用正交原理,当k=0时,后面两项都等于0,X(0)=2*256=512;
当k=50,第一和第三项为0,中间不为0,X(50)=3*1/2*256*e(-j*π/6),模值|X(50)|=384;
当K=75,同理,模值|X(75)|=192;
(matlab中下标是从1开始的,所以K的取值向后延一位,即K=1,51,76)这与实验出来的结果是一致的。
FFT结果的物理意义的更多相关文章
- FFT算法的物理意义
FFT是离散傅立叶变换的高速算法,能够将一个信号变换到频域.有些信号在时域上是非常难看出什么特征的,可是如果变换到频域之后,就非常easy看出特征了.这就是非常多信号分析採用FFT变换的原因.另外,F ...
- FFT的物理意义
来源:学步园 FFT(Fast Fourier Transform,快速傅立叶变换)是离散傅立叶变换的快速算法,也是我们在数字信号处理技术中经常会提到的一个概念.在大学的理工科课程中,在完成高等数学的 ...
- FFT的物理意义(转载)
文章转载自: http://blog.sina.com.cn/s/blog_640029b301010xkv.html FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域.有些信号在时域上是很 ...
- SVD奇异值分解的几何物理意义资料汇总
学习SVD奇异值分解的网上资料汇总: 1. 关于svd的一篇概念文,这篇文章也是后续几篇文章的鼻祖~ http://www.ams.org/samplings/feature-column/fcarc ...
- KKT条件的物理意义(转)
最好的解释:https://www.quora.com/What-is-an-intuitive-explanation-of-the-KKT-conditions# 作者:卢健龙链接:https:/ ...
- 行列式(determinant)的物理意义及性质
1. 物理(几何)意义 detA=output areainput area 首选,矩阵代表的是线性变换(linear transformation).上式说明一个矩阵的行列式(detA)几何意义上, ...
- 关于等效的物理意义 On the Physical Meaning of Equivalence
当我们谈到两个物理概念是等效的,这意味着: 1.它们拥有同样的属性.例如质量和能量都可以弯曲空间. 2.它们可以在设计实验中无法区分彼此.例如恒星系统中行星的质量与恒星的引力. 3.它们可以互相转化. ...
- VC维的物理意义
vc约等于可调节参数的个数 来自为知笔记(Wiz)
- n个并发进程共用一个公共变量Q,写出用信号灯实现n个进程互斥的程序描述,给出信号灯值得取值范围,并说明每个取值范围的物理意义。
答: var mutex: semaphore:=1; begin cobegin process i : begin // i = 1,2,……,n repeat P(mutex); 对公共变量 ...
随机推荐
- [每日一题] OCP1z0-047 :2013-08-06 外表部――相关描述
这道题目的知识点是要你熟悉外部表,怎么建外部表,外部表的数据是怎么存储的等等.请给出正确答案,并解释A B C D每项,最好用实验测试证明! 外部表的metadata(元数据)是存在数据库中,但它的数 ...
- Editor Scripting学习笔记之Menu Item
主要用到: MenuItem属性 MenuCommand参数 可能用到: EditorApplication类 Selection类 GameObjectUtility类 FileUtil类 Undo ...
- C# 的时间戳转换
/// <summary> /// 时间戳转为C#格式时间 /// </summary> /// <param name="timeStamp"> ...
- ios实例开发精品源码文章推荐
iOS源码:游戏引擎-推箱子游戏 http://www.apkbus.com/android-106392-1-11.html iOS源码:进度条-Colorful ProgressView http ...
- iOS 在类实现定义中声明成员变量的怪异方式
WebGL 规范(WebGL Specification) 太阳火神的漂亮人生 (http://blog.csdn.net/opengl_es) 本文遵循"署名-非商业用途-保持一致&quo ...
- EJB究竟是什么,真的那么神奇吗??
1. 我们不禁要问,什么是"服务集群"?什么是"企业级开发"? 既然说了EJB 是为了"服务集群"和"企业级开发",那么 ...
- Gtest源码剖析:1.实现一个超级简单的测试框架xtest
下面的代码模仿gtest实现,主要说明了以下两点: ASSERT_* 和 EXPECT_*系列断言的原理和作用. gtest是怎样通过宏自动注册测试代码让其自动运行的. #include <io ...
- bigDecimal 使用小结
关于四舍五入: ROUND_HALF_UP: 遇到.5的情况时往上近似,例: 1.5 ->;2 ROUND_HALF_DOWN : 遇到.5的情况时往下近似,例: 1.5 ->;1 注 ...
- 1.5.3 什么是Tokenizer-分词
什么是Tokenizer-分词 分词器的工作就是分解文本流成词(tokens).在这个文本中,每一个token都是这些字符的一个子序列.一个分析器(analyzer)必须知道它所配置的字段,但是tok ...
- GET和POST的主要区别
1.get是从服务器上获取数据,post是向服务器传送数据 2.在客户端上,get通过url提交数据,数据在url上可以看到,post方式,数据放置在HTMLHEADER内提交 3.对于get方式,服 ...