思路:我们用单调队列保存2*b<=i-j<=2*a中的最大值。那么队列头就是最大值,如果队头的标号小于i-2*b的话,就出队,后面的肯定用不到它了。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define inf 10000010
#define Maxn 1010
#define Min(a,b) (a)>(b)?(b):(a)
using namespace std;
int dp[],que[],head,rear,interv[];
struct Inter{
int l,r;
int operator<(const Inter &temp) const
{
return l<temp.l;
}
}p[Maxn];
int main()
{
int n,l,i,j,t,a,b;
while(scanf("%d%d",&n,&l)!=EOF)
{
scanf("%d%d",&a,&b);
memset(interv,,sizeof(interv));
for(i=;i<=n;i++)
{
scanf("%d%d",&p[i].l,&p[i].r);
memset(interv+p[i].l+,,(p[i].r-p[i].l-)*sizeof(interv[]));
}
dp[]=;
head=,rear=;
for(i=;i<=l;i++)
{
dp[i]=inf;
j=i-*a;
if(j<) continue;
while(head<=rear&&dp[j]<=dp[que[rear]])
rear--;
if(interv[j])
que[++rear]=j;
if(que[head]<i-*b&&head<=rear)
head++;
if(!interv[i]||(i&)) continue;
if(head<=rear)
dp[i]=dp[que[head]]+;
}
if(dp[l]>=inf) printf("-1\n");
else printf("%d\n",dp[l]);
}
return ;
}

poj 2373 单调队列优化背包的更多相关文章

  1. POJ 2373 单调队列优化DP

    题意: 思路: f[i] = min(f[j]) + 1; 2 * a <= i - j <= 2 *b: i表示当前在第i个点.f[i]表示当前最少的线段个数 先是N^2的朴素DP(果断 ...

  2. POJ - 1821 单调队列优化DP + 部分笔记

    题意:n个墙壁m个粉刷匠,每个墙壁至多能被刷一次,每个粉刷匠要么不刷,要么就粉刷包含第Si块的长度不超过Li的连续墙壁(中间可不刷),每一块被刷的墙壁都可获得Pi的利润,求最大利润 避免重复粉刷: 首 ...

  3. poj 3017 单调队列优化动态规划

    思路:dp[i]=min{dp[j]+max(num[j+1]...num[i])},其中sum[i]-sum[j]<=m. 那么我们需要用单调队列维护j到i的最大值. #include< ...

  4. poj 1821 Fence 单调队列优化dp

    /* poj 1821 n*n*m 暴力*/ #include<iostream> #include<cstdio> #include<cstring> #incl ...

  5. 【POJ】2373 Dividing the Path(单调队列优化dp)

    题目 传送门:QWQ 分析 听说是水题,但还是没想出来. $ dp[i] $为$ [1,i] $的需要的喷头数量. 那么$ dp[i]=min(dp[j])+1 $其中$ j<i $ 这是个$ ...

  6. POJ 1742 (单调队列优化多重背包+混合背包)

    (点击此处查看原题) 题意分析 给你n种不同价值的硬币,价值为val[1],val[2]...val[n],每种价值的硬币有num[1],num[2]...num[n]个,问使用这n种硬币可以凑齐[1 ...

  7. 【POJ1276】Cash Machine(多重背包单调队列优化)

    大神博客转载http://www.cppblog.com/MatoNo1/archive/2011/07/05/150231.aspx多重背包的单调队列初中就知道了但一直没(不会)写二进制优化初中就写 ...

  8. 单调队列优化DP,多重背包

    单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...

  9. 使用单调队列优化的 O(nm) 多重背包算法

    我搜索了一下,找到了一篇很好的博客,讲的挺详细:链接. 解析 多重背包的最原始的状态转移方程: 令 c[i] = min(num[i], j / v[i]) f[i][j] = max(f[i-1][ ...

随机推荐

  1. 线性判别分析(Linear Discriminant Analysis,LDA)

    一.LDA的基本思想 线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discriminant ,FLD) ...

  2. Measuring Signal Similarities

    http://cn.mathworks.com/help/signal/examples/measuring-signal-similarities.html Open This Example   ...

  3. INV(库存管理)

    物料 PROCEDURE update_item(p_init_msg_list IN VARCHAR2 DEFAULT fnd_api.g_false, x_return_status OUT NO ...

  4. 多线程访问winform控件出现异常的解决方法

    一.  多线程访问winform控件出现异常的解决方法 1.  问题描述<1> 如果创建某控件的线程之外的其他线程试图调用该控件,则会引发一个 InvalidOperationExcept ...

  5. 解决Linux下sqlplus中文乱码问题

    错误现象:在windows下用其他工具访问oracle,确认中文正常显示.在Linux下使用sqlplus查询数据表中文内容出现乱码. 分析及解决:因为windows下正常,所以问题应出现在Linux ...

  6. C# 解压zip压缩文件

    此方法需要在程序内引用ICSharpCode.SharpZipLib.dll 类库 /// <summary> /// 功能:解压zip格式的文件. /// </summary> ...

  7. PostgreSQL的 initdb 源代码分析之十七

    继续分析: setup_collation() 展开: /* * populate pg_collation */ static void setup_collation(void) { #if de ...

  8. Oracle DataGuard 物理Standby 搭建(下)

    主备库切换 Switchover 一般SWITCHOVER切换都是计划中的切换,特点是在切换后,不会丢失任何的数据,而且这个过程是可逆的,整个DATA GUARD环境不会被破坏,原来DATA GUAR ...

  9. BZOJ 1968: [Ahoi2005]COMMON 约数研究 水题

    1968: [Ahoi2005]COMMON 约数研究 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeO ...

  10. Codeforces Gym 100342D Problem D. Dinner Problem Dp+高精度

    Problem D. Dinner ProblemTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/1003 ...