bzoj2395
分组赛时学到的最小乘积生成树模型,感觉这个思路非常神,可以说是数形结合的经典问题
由于生成树有两个权值,我们把每个生成树的权值表示成点坐标(sa,sb)
显然我们知道,乘积最小,那么点必然落在下凸壳上
但由于点太多,graham之类要先知道所有点再求凸包的算法就失效了
于是我们使用quickhull算法,这个算法只要知道凸包上的两个点就可以扩展出下一个点,然后不断分治即可扩展出所有点
显然,以a为关键字和以b为关键字的最小生成树一定是凸包上的两个点i,j
根据quickhull算法,下一个凸包上的点就是离直线ij距离最大的点
转化一下,就是与ij垂直的向量点积最小的点
显然我们只要以此为关键字求最小生成树即可
这样我们不断分治下去,直到无法扩展为止,这样就找到了答案
但我好像被卡常了(还是写的太囧……),总之tle了……
type node=record
x,y,w,a,b:longint;
end;
point=record
x,y:longint;
end; var e:array[..] of node;
fa:array[..] of longint;
i,n,m:longint;
ans,p1,p2:point; function getf(x:longint):longint;
begin
if fa[x]<>x then fa[x]:=getf(fa[x]);
exit(fa[x]);
end; procedure swap(var a,b:node);
var c:node;
begin
c:=a;
a:=b;
b:=c;
end; function cmp(x,y:node):boolean;
begin
if x.w=y.w then exit(x.a<y.a);
exit(x.w<y.w);
end; procedure sort(l,r:longint);
var i,j:longint;
x:node;
begin
i:=l;
j:=r;
x:=e[(l+r) shr ];
repeat
while cmp(e[i],x) do inc(i);
while cmp(x,e[j]) do dec(j);
if not(i>j) then
begin
swap(e[i],e[j]);
inc(i);
dec(j);
end;
until i>j;
if l<j then sort(l,j);
if i<r then sort(i,r);
end; function mintree:point;
var i,j,sa,sb,x,y:longint;
begin
{for j:=1 to m do
writeln(e[j].w); }
j:=;
sa:=;
sb:=;
for i:= to n do
fa[i]:=i;
i:=;
while i<n- do
begin
inc(j);
x:=getf(e[j].x);
y:=getf(e[j].y);
if x<>y then
begin
fa[x]:=y;
sa:=sa+e[j].a;
sb:=sb+e[j].b;
inc(i);
end;
end;
mintree.x:=sa;
mintree.y:=sb;
if (int64(ans.x)*int64(ans.y)>int64(sa)*int64(sb)) or (int64(ans.x)*int64(ans.y)=int64(sa)*int64(sb)) and (ans.x>sa) then
begin
ans.x:=sa;
ans.y:=sb;
end;
end; function cross(a,b,c:point):int64;
begin
exit(int64(a.x-c.x)*int64(b.y-c.y)-int64(a.y-c.y)*int64(b.x-c.x));
end; procedure work(p1,p2:point);
var i:longint;
p:point; begin
for i:= to m do
e[i].w:=e[i].a*(p1.y-p2.y)+e[i].b*(p2.x-p1.x);
sort(,m);
p:=mintree;
if cross(p2,p,p1)>= then exit;
work(p1,p);
work(p,p2);
end; begin
readln(n,m);
for i:= to m do
begin
readln(e[i].x,e[i].y,e[i].a,e[i].b);
inc(e[i].x);
inc(e[i].y);
e[i].w:=e[i].a;
end;
ans.x:=;
ans.y:=;
sort(,m);
p1:=mintree;
for i:= to m do
e[i].w:=e[i].b;
sort(,m);
p2:=mintree;
work(p1,p2);
writeln(ans.x,' ',ans.y);
end.
bzoj2395的更多相关文章
- 【BZOJ2395】[Balkan 2011]Timeismoney
[BZOJ2395][Balkan 2011]Timeismoney 题面 \(darkbzoj\) 题解 如果我们只有一个条件要满足的话直接最小生成树就可以了,但是现在我们有两维啊... 我们将每个 ...
- 【最小乘积生成树】bzoj2395[Balkan 2011]Timeismoney
设每个点有x,y两个权值,求一棵生成树,使得sigma(x[i])*sigma(y[i])最小. 设每棵生成树为坐标系上的一个点,sigma(x[i])为横坐标,sigma(y[i])为纵坐标.则问题 ...
- BZOJ2395 [Balkan 2011]Timeismoney 【最小乘积生成树】
题目链接 BZOJ2395 题意:无向图中每条边有两种权值,定义一个生成树的权值为两种权值各自的和的积 求权值最小的生成树 题解 如果我们将一个生成树的权值看做坐标,那么每一个生成树就对应一个二维平面 ...
- bzoj2395[Balkan 2011]Timeismoney最小乘积生成树
所谓最小乘积生成树,即对于一个无向连通图的每一条边均有两个权值xi,yi,在图中找一颗生成树,使得Σxi*Σyi取最小值. 直接处理问题较为棘手,但每条边的权值可以描述为一个二元组(xi,yi),这也 ...
- bzoj2395: [Balkan 2011]Timeismoney
Description 有n个城市(编号从0..n-1),m条公路(双向的),从中选择n-1条边,使得任意的两个城市能够连通,一条边需要的c的费用和t的时间,定义一个方案的权值v=n-1条边 ...
- 【BZOJ2395】【Balkan 2011】Timeismoney 最小乘积生成树
链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...
- Bzoj2395: [Balkan 2011]Timeismoney(最小乘积生成树)
问题描述 每条边两个权值 \(x,y\),求一棵 \((\sum x) \times (\sum y)\) 最小的生成树 Sol 把每一棵生成树的权值 \(\sum x\) 和 \(\sum y\) ...
- BZOJ2395:[Balkan 2011]Timeismoney——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=2395 有n个城市(编号从0..n-1),m条公路(双向的),从中选择n-1条边,使得任意的两个城市 ...
- bzoj2395 [Balkan 2011]Timeismoney(最小乘积生成树+计算几何)
题意 每条边有两个权值\(c,t\),请求出一颗生成树,使得\(\sum c\times \sum t\)最小 题解 为什么生成树会和计算几何扯上关系-- 对于每棵树,设\(x=c,y=t\),我们可 ...
随机推荐
- Java 8 VM GC Tunning Guide Charter 5
第5章 Available GC The Java HotSpot VM includes three different types of collectors, each with differe ...
- ruby 格式化当前日期时间
ruby 格式化当前日期时间 ruby 用Time类获取当前时间. t = Time.new puts t 可以看到输出的是(我现在运行的时间): Sat Jan 29 10:45:22 +0800 ...
- SQL Server数据库事务日志序列号(LSN)介绍
原文:http://blog.csdn.net/tjvictor/article/details/5251463 日志序列编号(LSN)是事务日志里面每条记录的编号. 当你执行一次备份时,一些 ...
- vs2008调试提示:未安装Silverlight托管调试包
换个启动浏览器,解决了. 右击项目,选择“属性”,选择"web";启动操作设置“启动外部程序”,填入浏览器exe的路径. 命令行参数填入地址.即可.
- 2005: [Noi2010]能量采集 - BZOJ
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...
- Codeforces Round #321 (Div. 2) D. Kefa and Dishes 状压dp
题目链接: 题目 D. Kefa and Dishes time limit per test:2 seconds memory limit per test:256 megabytes 问题描述 W ...
- SQL语言笔记
字符串用单引号',判断用单等号=,两个单引号''转义为一个单引号' 不等号是<> 不区分大小写 []括起来的要不是关键字,要不是非法变量,比如空格隔起来的变量 创建与删除数据库 - ...
- PHP开发框架[流行度排名]
在PHP开发中,选择合适的框架有助于加快软件开发,节约宝贵的项目时间,让开发者专注于功能的实现上.Sitepoint网站做了一个小的调查,结果显示最流行的PHP框架前三甲为:Laravel.Phalc ...
- Comparable & Comparator
Comparable & Comparator 都是用来实现集合中元素的比较.排序的,只是 Comparable 是在集合内部定义的方法实现的排序,Comparator 是在集合外部实现的排序 ...
- POJ 2253 Frogger (求某两点之间所有路径中最大边的最小值)
题意:有两只青蛙,a在第一个石头,b在第二个石头,a要到b那里去,每种a到b的路径中都有最大边,求所有这些最大边的最小值.思路:将所有边长存起来,排好序后,二分枚举答案. 时间复杂度比较高,344ms ...