bzoj2395
分组赛时学到的最小乘积生成树模型,感觉这个思路非常神,可以说是数形结合的经典问题
由于生成树有两个权值,我们把每个生成树的权值表示成点坐标(sa,sb)
显然我们知道,乘积最小,那么点必然落在下凸壳上
但由于点太多,graham之类要先知道所有点再求凸包的算法就失效了
于是我们使用quickhull算法,这个算法只要知道凸包上的两个点就可以扩展出下一个点,然后不断分治即可扩展出所有点
显然,以a为关键字和以b为关键字的最小生成树一定是凸包上的两个点i,j
根据quickhull算法,下一个凸包上的点就是离直线ij距离最大的点
转化一下,就是与ij垂直的向量点积最小的点
显然我们只要以此为关键字求最小生成树即可
这样我们不断分治下去,直到无法扩展为止,这样就找到了答案
但我好像被卡常了(还是写的太囧……),总之tle了……
type node=record
x,y,w,a,b:longint;
end;
point=record
x,y:longint;
end; var e:array[..] of node;
fa:array[..] of longint;
i,n,m:longint;
ans,p1,p2:point; function getf(x:longint):longint;
begin
if fa[x]<>x then fa[x]:=getf(fa[x]);
exit(fa[x]);
end; procedure swap(var a,b:node);
var c:node;
begin
c:=a;
a:=b;
b:=c;
end; function cmp(x,y:node):boolean;
begin
if x.w=y.w then exit(x.a<y.a);
exit(x.w<y.w);
end; procedure sort(l,r:longint);
var i,j:longint;
x:node;
begin
i:=l;
j:=r;
x:=e[(l+r) shr ];
repeat
while cmp(e[i],x) do inc(i);
while cmp(x,e[j]) do dec(j);
if not(i>j) then
begin
swap(e[i],e[j]);
inc(i);
dec(j);
end;
until i>j;
if l<j then sort(l,j);
if i<r then sort(i,r);
end; function mintree:point;
var i,j,sa,sb,x,y:longint;
begin
{for j:=1 to m do
writeln(e[j].w); }
j:=;
sa:=;
sb:=;
for i:= to n do
fa[i]:=i;
i:=;
while i<n- do
begin
inc(j);
x:=getf(e[j].x);
y:=getf(e[j].y);
if x<>y then
begin
fa[x]:=y;
sa:=sa+e[j].a;
sb:=sb+e[j].b;
inc(i);
end;
end;
mintree.x:=sa;
mintree.y:=sb;
if (int64(ans.x)*int64(ans.y)>int64(sa)*int64(sb)) or (int64(ans.x)*int64(ans.y)=int64(sa)*int64(sb)) and (ans.x>sa) then
begin
ans.x:=sa;
ans.y:=sb;
end;
end; function cross(a,b,c:point):int64;
begin
exit(int64(a.x-c.x)*int64(b.y-c.y)-int64(a.y-c.y)*int64(b.x-c.x));
end; procedure work(p1,p2:point);
var i:longint;
p:point; begin
for i:= to m do
e[i].w:=e[i].a*(p1.y-p2.y)+e[i].b*(p2.x-p1.x);
sort(,m);
p:=mintree;
if cross(p2,p,p1)>= then exit;
work(p1,p);
work(p,p2);
end; begin
readln(n,m);
for i:= to m do
begin
readln(e[i].x,e[i].y,e[i].a,e[i].b);
inc(e[i].x);
inc(e[i].y);
e[i].w:=e[i].a;
end;
ans.x:=;
ans.y:=;
sort(,m);
p1:=mintree;
for i:= to m do
e[i].w:=e[i].b;
sort(,m);
p2:=mintree;
work(p1,p2);
writeln(ans.x,' ',ans.y);
end.
bzoj2395的更多相关文章
- 【BZOJ2395】[Balkan 2011]Timeismoney
[BZOJ2395][Balkan 2011]Timeismoney 题面 \(darkbzoj\) 题解 如果我们只有一个条件要满足的话直接最小生成树就可以了,但是现在我们有两维啊... 我们将每个 ...
- 【最小乘积生成树】bzoj2395[Balkan 2011]Timeismoney
设每个点有x,y两个权值,求一棵生成树,使得sigma(x[i])*sigma(y[i])最小. 设每棵生成树为坐标系上的一个点,sigma(x[i])为横坐标,sigma(y[i])为纵坐标.则问题 ...
- BZOJ2395 [Balkan 2011]Timeismoney 【最小乘积生成树】
题目链接 BZOJ2395 题意:无向图中每条边有两种权值,定义一个生成树的权值为两种权值各自的和的积 求权值最小的生成树 题解 如果我们将一个生成树的权值看做坐标,那么每一个生成树就对应一个二维平面 ...
- bzoj2395[Balkan 2011]Timeismoney最小乘积生成树
所谓最小乘积生成树,即对于一个无向连通图的每一条边均有两个权值xi,yi,在图中找一颗生成树,使得Σxi*Σyi取最小值. 直接处理问题较为棘手,但每条边的权值可以描述为一个二元组(xi,yi),这也 ...
- bzoj2395: [Balkan 2011]Timeismoney
Description 有n个城市(编号从0..n-1),m条公路(双向的),从中选择n-1条边,使得任意的两个城市能够连通,一条边需要的c的费用和t的时间,定义一个方案的权值v=n-1条边 ...
- 【BZOJ2395】【Balkan 2011】Timeismoney 最小乘积生成树
链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...
- Bzoj2395: [Balkan 2011]Timeismoney(最小乘积生成树)
问题描述 每条边两个权值 \(x,y\),求一棵 \((\sum x) \times (\sum y)\) 最小的生成树 Sol 把每一棵生成树的权值 \(\sum x\) 和 \(\sum y\) ...
- BZOJ2395:[Balkan 2011]Timeismoney——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=2395 有n个城市(编号从0..n-1),m条公路(双向的),从中选择n-1条边,使得任意的两个城市 ...
- bzoj2395 [Balkan 2011]Timeismoney(最小乘积生成树+计算几何)
题意 每条边有两个权值\(c,t\),请求出一颗生成树,使得\(\sum c\times \sum t\)最小 题解 为什么生成树会和计算几何扯上关系-- 对于每棵树,设\(x=c,y=t\),我们可 ...
随机推荐
- SCRUM报告(一)
我们“来用”团队确定的PM是邓锐.这是我们第一篇SCRUM报告,报告的内容就是我们的Sprint会议.之前冲刺计划会议的内容已发博客,这里简单阐述一下. 一.会议过程大致如下: 1.总结目前的工作进展 ...
- Careercup - Facebook面试题 - 5344154741637120
2014-05-02 10:40 题目链接 原题: Sink Zero in Binary Tree. Swap zero value of a node with non-zero value of ...
- Android Studio:Gradle常用命令
Android Studio中自带Terminal,可以直接使用gradle命令,不必另开命令窗口,相当方便,下面总结一下常用的命令: 1.查看Gradle版本号 ./gradlew -v ...
- Codeforces Beta Round #10 D. LCIS
题目链接: http://www.codeforces.com/contest/10/problem/D D. LCIS time limit per test:1 secondmemory limi ...
- 01-05-01-2【Nhibernate (版本3.3.1.4000) 出入江湖】立即加载实现--NHibernateUtil.Initialize()和添加fetch关键字的HQL查询
相关资料: http://www.cnblogs.com/lyj/archive/2008/10/29/1322373.html 问题的提出: 1.延迟加载,可能会引起session已经关闭的异常,例 ...
- ajax post 跨域
H5页面永远无法避开跨域问题-- php中, header('Access-Control-Allow-Origin:*'); 搞定. 兼容性先不管了. 来自为知笔记(Wiz)
- script是什么
script是什么 scirpt就是一个命令,可以制作一份记录输出到终端的记录.对于那些想要真实记录终端会话的人来说,这很有用.该记录可以保存并在以后再打印出来. 怎么用 默认情况下,我们可以通过在终 ...
- 【C++基础】sizeof 与 strlen的区别
要理解两者的区别,就要分别理解他们的本质 strlen(char *) 计算字符串的长度,内部实现是用一个循环计算字符串的长度,直到‘\0’为止 1.srtlen 是一个函数,参数只能为char 或者 ...
- Java中finalize()
垃圾回收器要回收对象的时候,首先要调用这个类的finalize方法(你可以 写程序验证这个结论),一般的纯Java编写的Class不需要重新覆盖这个方法,因为Object已经实现了一个默认的,除非我们 ...
- 深入浅出ES6(五):不定参数和默认参数
作者 Jason Orendorff github主页 https://github.com/jorendorff 不定参数 我们通常使用可变参函数来构造API,可变参函数可接受任意数量的参数.例 ...