Martian Mining
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 2194   Accepted: 1326

Description

The NASA Space Center, Houston, is less than 200 miles from San Antonio, Texas (the site of the ACM Finals this year). This is the place where the astronauts are trained for Mission Seven Dwarfs, the next giant leap in space exploration. The Mars Odyssey program revealed that the surface of Mars is very rich in yeyenum and bloggium. These minerals are important ingredients for certain revolutionary new medicines, but they are extremely rare on Earth. The aim of Mission Seven Dwarfs is to mine these minerals on Mars and bring them back to Earth.

The Mars Odyssey orbiter identified a rectangular area on the surface of Mars that is rich in minerals. The area is divided into cells that form a matrix of n rows and m columns, where the rows go from east to west and the columns go from north to south. The orbiter determined the amount of yeyenum and bloggium in each cell. The astronauts will build a yeyenum refinement factory west of the rectangular area and a bloggium factory to the north. Your task is to design the conveyor belt system that will allow them to mine the largest amount of minerals.

There are two types of conveyor belts: the first moves minerals from east to west, the second moves minerals from south to north. In each cell you can build either type of conveyor belt, but you cannot build both of them in the same cell. If two conveyor belts of the same type are next to each other, then they can be connected. For example, the bloggium mined at a cell can be transported to the bloggium refinement factory via a series of south-north conveyor belts.

The minerals are very unstable, thus they have to be brought to the factories on a straight path without any turns. This means that if there is a south-north conveyor belt in a cell, but the cell north of it contains an east-west conveyor belt, then any mineral transported on the south-north conveyor beltwill be lost. The minerals mined in a particular cell have to be put on a conveyor belt immediately, in the same cell (thus they cannot start the transportation in an adjacent cell). Furthermore, any bloggium transported to the yeyenum refinement factory will be lost, and vice versa.




Your program has to design a conveyor belt system that maximizes the total amount of minerals mined,i.e., the sum of the amount of yeyenum transported to the yeyenum refinery and the amount of bloggium transported to the bloggium refinery.

Input

The input contains several blocks of test cases. Each case begins with a line containing two integers: the number 1 ≤ n ≤ 500 of rows, and the number 1 ≤ m ≤ 500 of columns. The next n lines describe the amount of yeyenum that can be found in the cells. Each of these n lines contains m integers. The first line corresponds to the northernmost row; the first integer of each line corresponds to the westernmost cell of the row. The integers are between 0 and 1000. The next n lines describe in a similar fashion theamount of bloggium found in the cells.

The input is terminated by a block with n = m = 0.

Output

For each test case, you have to output a single integer on a separate line: the maximum amount of mineralsthat can be mined.

Sample Input

4 4
0 0 10 9
1 3 10 0
4 2 1 3
1 1 20 0
10 0 0 0
1 1 1 30
0 0 5 5
5 10 10 10
0 0

Sample Output

98

Hint

Huge input file, 'scanf' recommended to avoid TLE.

Source

Central Europe 2005


  容易的状态转换:
 dp[i][j] = max(dp[i][j-1]+up[i][j],dp[i-1][j]+Left[i][j],dp[i-1][j-1]+Left[i][j-1]+up[i-1][j]+max(yey[i][j],blo[i][j]));


  up[i][j] 还有left[i][j]可以预处理出来

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#define N 510
using namespace std;
int yey[N][N],blo[N][N];
int up[N][N],Left[N][N],dp[N][N];
int main()
{
//freopen("data.in","r",stdin);
int n,m;
while(scanf("%d %d",&n,&m)!=EOF)
{
if(n==0&&m==0)
{
break;
}
memset(Left,0,sizeof(Left));
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%d",&yey[i][j]);
Left[i][j] = Left[i][j-1] + yey[i][j];
}
}
memset(up,0,sizeof(up));
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%d",&blo[i][j]);
up[i][j] = up[i-1][j] + blo[i][j];
}
}
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
int k = max(dp[i][j-1]+up[i][j],dp[i-1][j]+Left[i][j]);
k = max(k,dp[i-1][j-1]+Left[i][j-1]+up[i-1][j]+max(yey[i][j],blo[i][j]));
dp[i][j] = max(k,dp[i][j]);
}
}
printf("%d\n",dp[n][m]);
}
return 0;
}

POJ 2498 Martian Mining的更多相关文章

  1. POJ 2948 Martian Mining

    Martian Mining Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 2251 Accepted: 1367 Descri ...

  2. POJ 2948 Martian Mining(DP)这是POJ第200道,居然没发现

    题目链接 两种矿石,Y和B,Y只能从从右到左,B是从下到上,每个空格只能是上下或者左右,具体看图.求左端+上端最大值. 很容易发现如果想最优,分界线一定是不下降的,分界线上面全是往上,分界线下面都是往 ...

  3. POJ 2948 Martian Mining(DP)

    题目链接 题意 : n×m的矩阵,每个格子中有两种矿石,第一种矿石的的收集站在最北,第二种矿石的收集站在最西,需要在格子上安装南向北的或东向西的传送带,但是每个格子中只能装一种传送带,求最多能采多少矿 ...

  4. poj 2948 Martian Mining (dp)

    题目链接 完全自己想的,做了3个小时,刚开始一点思路没有,硬想了这么长时间,想了一个思路, 又修改了一下,提交本来没抱多大希望 居然1A了,感觉好激动..很高兴dp又有所长进. 题意: 一个row*c ...

  5. (中等) POJ 2948 Martian Mining,DP。

    Description The NASA Space Center, Houston, is less than 200 miles from San Antonio, Texas (the site ...

  6. UVA 1366 九 Martian Mining

    Martian Mining Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit Sta ...

  7. 递推DP UVA 1366 Martian Mining

    题目传送门 /* 题意:抽象一点就是给两个矩阵,重叠的(就是两者选择其一),两种铺路:从右到左和从下到上,中途不能转弯, 到达边界后把沿途路上的权值相加求和使最大 DP:这是道递推题,首先我题目看了老 ...

  8. poj 2498 动态规划

    思路:简单动态规划 #include<map> #include<set> #include<cmath> #include<queue> #inclu ...

  9. UVa 1366 - Martian Mining (dp)

    本文出自   http://blog.csdn.net/shuangde800 题目链接: 点击打开链接 题目大意 给出n*m网格中每个格子的A矿和B矿数量,A矿必须由右向左运输,B矿必须由下向上运输 ...

随机推荐

  1. HDU5479 Colmerauer 单调栈+暴力优化

    http://acm.hdu.edu.cn/showproblem.php?pid=5749 思路: bestcoder 84 贡献:所有可能的子矩阵的面积和 //len1:子矩阵所有长的和 ;i&l ...

  2. Educational Codeforces Round 14

    A - Fashion in Berland 水 // #pragma comment(linker, "/STACK:102c000000,102c000000") #inclu ...

  3. 12306验证图片的bug

    刚才有人告诉我12306验证码换了,于是我就打开了看了看,点了点.oh no , i am really sorry ,12306.

  4. Hbase Basic Prerequisites

    Table 2. Java HBase Version   JDK 6      JDK 7       JDK 8 1.0 Not     Supported yes Running with JD ...

  5. cloud maintenance of OpenNebula

    OpenNebula 4.4.1 maintenance release,官方建议当前的生产环境使用3.x or 4.x的其它版本; php调用curl工具伪造ip Upgrading from Op ...

  6. 现代程序设计 homework-05

    本次作业要求设计服务器和客户端,由于之前对网络编程是一窍不通,上上节课听宗学长讲述Tcp的时候心里想这个东西还真是高大上啊一点儿都听不懂,但是上个周末看了看C#网络编程的博客和书之后,发现这个东西入门 ...

  7. JSP学习初体验

    JSP简介: 1)JSP--Java Server Pages 2)拥有servlet的特性与优点(本身就是一个servlet) 3)直接在HEML中内嵌JSP代码 4)JSP程序由JSP Engin ...

  8. [MAC OSX - 1] OSX10.10不能安装JKD8,不能使用eclipse

    (1)电脑升级为10.10后,打开eclipse总是提示"您需要安装旧 Java SE 6 运行环境才能打开"Eclipse". 解决:安装JKD   (2)不能安装JK ...

  9. Nginx反向代理 负载均衡 页面缓存 URL重写及读写分离

    大纲 一.前言 二.环境准备 三.安装与配置Nginx 四.Nginx之反向代理 五.Nginx之负载均衡 六.Nginx之页面缓存 七.Nginx之URL重写 八.Nginx之读写分离 注,操作系统 ...

  10. javascript实现颜色渐变

    渐变(Gradient)是美学中一条重要的形式美法则,与其相对应的是突变.形状.大小.位置.方向.色彩等视觉因素都可以进行渐变.在色彩中,色相.明度.纯度也都可以产生渐变效果,并会表现出具有丰富层次的 ...