CF1029C Maximal Intersection 暴力枚举
3 seconds
256 megabytes
standard input
standard output
You are given nn segments on a number line; each endpoint of every segment has integer coordinates. Some segments can degenerate to points. Segments can intersect with each other, be nested in each other or even coincide.
The intersection of a sequence of segments is such a maximal set of points (not necesserily having integer coordinates) that each point lies within every segment from the sequence. If the resulting set isn't empty, then it always forms some continuous segment. The length of the intersection is the length of the resulting segment or 00 in case the intersection is an empty set.
For example, the intersection of segments [1;5][1;5] and [3;10][3;10] is [3;5][3;5] (length 22), the intersection of segments [1;5][1;5] and [5;7][5;7] is [5;5][5;5] (length 00) and the intersection of segments [1;5][1;5] and [6;6][6;6] is an empty set (length 00).
Your task is to remove exactly one segment from the given sequence in such a way that the intersection of the remaining (n−1)(n−1) segments has the maximal possible length.
The first line contains a single integer nn (2≤n≤3⋅1052≤n≤3⋅105) — the number of segments in the sequence.
Each of the next nn lines contains two integers lili and riri (0≤li≤ri≤1090≤li≤ri≤109) — the description of the ii-th segment.
Print a single integer — the maximal possible length of the intersection of (n−1)(n−1) remaining segments after you remove exactly one segment from the sequence.
4
1 3
2 6
0 4
3 3
1
5
2 6
1 3
0 4
1 20
0 4
2
3
4 5
1 2
9 20
0
2
3 10
1 5
7
In the first example you should remove the segment [3;3][3;3], the intersection will become [2;3][2;3] (length 11). Removing any other segment will result in the intersection [3;3][3;3] (length 00).
In the second example you should remove the segment [1;3][1;3] or segment [2;6][2;6], the intersection will become [2;4][2;4] (length 22) or [1;3][1;3] (length 22), respectively. Removing any other segment will result in the intersection [2;3][2;3] (length 11).
In the third example the intersection will become an empty set no matter the segment you remove.
In the fourth example you will get the intersection [3;10][3;10] (length 77) if you remove the segment [1;5][1;5] or the intersection [1;5][1;5] (length 44) if you remove the segment [3;10][3;10].
题意:已知n个区间,求删去一个区间后剩余的区间交的区域最大值
分析:求去掉某段区间后剩余的区间的相交区域,相当于求这个区间前面所有区间的相交区域和这个区间后的所有相交区域的交集
在开始的时候枚举出所有点,关于这点前的相交区域pre[i-1],关于这点后的相交区域pos[i+1]
然后枚举pre[i-1]与pos[i+1]相交区域的最大值
AC代码:
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <bitset>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
#define ls (r<<1)
#define rs (r<<1|1)
#define debug(a) cout << #a << " " << a << endl
using namespace std;
typedef long long ll;
const ll maxn = 3e5+10;
const double eps = 1e-8;
const ll mod = 1e9 + 7;
const ll inf = 1e9;
const double pi = acos(-1.0);
struct node {
ll x, y;
};
node a[maxn], pre[maxn], pos[maxn];
int main() {
ll n, maxle1 = 0, minri1 = 1e9+10, maxle2 = 0, minri2 = 1e9+10;
scanf("%lld",&n);
pos[n+1].y = pre[0].y = 1e9+10;
for( ll i = 1; i <= n; i ++ ) {
scanf("%lld%lld",&a[i].x,&a[i].y);
maxle1 = max(maxle1,a[i].x), minri1 = min(minri1,a[i].y);
pre[i].x = maxle1, pre[i].y = minri1;
}
for( ll i = n; i >= 1; i -- ) {
maxle2 = max(maxle2,a[i].x), minri2 = min(minri2,a[i].y);
pos[i].x = maxle2, pos[i].y = minri2;
}
ll ans = 0;
for( ll i = 1; i <= n; i ++ ) {
ll le = max(pre[i-1].x,pos[i+1].x), ri = min(pre[i-1].y,pos[i+1].y);
ans = max(ans,ri-le);
}
printf("%lld\n",ans);
return 0;
}
CF1029C Maximal Intersection 暴力枚举的更多相关文章
- F - Maximal Intersection --------暴力求解题
You are given n segments on a number line; each endpoint of every segment has integer coordinates. S ...
- CF1029C Maximal Intersection
https://www.luogu.org/problem/show?pid=CF1029C #include<bits/stdc++.h> using namespace std ; # ...
- 区间Dp 暴力枚举+动态规划 Hdu1081
F - 最大子矩形 Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u Submit Status Des ...
- Codeforces Round #506 (Div. 3) C. Maximal Intersection
C. Maximal Intersection time limit per test 3 seconds memory limit per test 256 megabytes input stan ...
- CodeForces 742B Arpa’s obvious problem and Mehrdad’s terrible solution (暴力枚举)
题意:求定 n 个数,求有多少对数满足,ai^bi = x. 析:暴力枚举就行,n的复杂度. 代码如下: #pragma comment(linker, "/STACK:1024000000 ...
- 2014牡丹江网络赛ZOJPretty Poem(暴力枚举)
/* 将给定的一个字符串分解成ABABA 或者 ABABCAB的形式! 思路:暴力枚举A, B, C串! */ 1 #include<iostream> #include<cstri ...
- HNU 12886 Cracking the Safe(暴力枚举)
题目链接:http://acm.hnu.cn/online/?action=problem&type=show&id=12886&courseid=274 解题报告:输入4个数 ...
- 51nod 1116 K进制下的大数 (暴力枚举)
题目链接 题意:中文题. 题解:暴力枚举. #include <iostream> #include <cstring> using namespace std; ; ; ch ...
- Codeforces Round #349 (Div. 1) B. World Tour 最短路+暴力枚举
题目链接: http://www.codeforces.com/contest/666/problem/B 题意: 给你n个城市,m条单向边,求通过最短路径访问四个不同的点能获得的最大距离,答案输出一 ...
随机推荐
- hdoj 1753 (Java)
刚刚开始用Java,代码难免不够简洁. import java.math.BigDecimal; import java.util.Scanner; public class Main { publi ...
- python 实现爬取网站下所有URL
python3 实现爬取网站下所有URL 获取首页元素信息: 首页的URL链接获取: 遍历第一次返回的结果: 递归循环遍历: 全部代码如下: 小结: python3.6 requests && ...
- ubuntu中设置python默认版本
看/usr/bin中的Python文件,发现该文件是python2.7的链接文件 于是直接删掉这个软链接,然后重新创建python2.6的链接文件: 1 rm /usr/bin/python 2 ln ...
- 【Python】Django【邮箱验证】 后端验证如何生成 token加密验证码 与如何解码!!!!
1.生成token验证码方案 ,使用itsdangerous 大宝剑, 可以序列化出验证码,并能设置过期时间 安装 itsdangerous pip install itsdangerous ...
- oracle-11g2下载安装笔记
一.下载链接地址 http://download.oracle.com/otn/nt/oracle11g/112010/win64_11gR2_database_1of2.zip http://dow ...
- Go中的文件读写
在 Go 语言中,文件使用指向 os.File 类型的指针来表示的,也叫做文件句柄 .我们来看一下os包的使用方式. 1.读取文件 os包提供了两种打开文件的方法: Open(name string) ...
- 洛谷 P1357 花园
题意简述 一个只含字母C和P的环形串 求长度为n且每m个连续字符不含有超过k个C的方案数 题解思路 由于\(m<=5\)所以很显然状压 但由于\(n<=10^{15}\).可以考虑用矩阵加 ...
- Windows Server2008 监控服务器性能
下面学习Windows Server2008监控服务器性能包括 日志管理,归档日志,日志排错,怎么配置计算机以转发和收集事件,使用任务管理监控内存和CPU的使用,查看程序内存使用,查看程序CPU使用, ...
- spring事务在实际项目开发中的使用
一, 事务的一些基础知识简单回顾一下,讲的不是很深入,网上博客很多. 1,关于事务的四大特性:原子性.隔离性.一致性.隔离性 本文不再赘述: 2,事务的隔离级别:读未提交,读已提交,可重复读,串行 ...
- Oracle中的字符函数
Oracle中常用的字符串函数有以下几种: 1.upper()---将字符串的内容全部转换为大写.lower()---将字符串的内容全部转换为小写.具体用法: select upper('test' ...