CF1029C Maximal Intersection 暴力枚举
3 seconds
256 megabytes
standard input
standard output
You are given nn segments on a number line; each endpoint of every segment has integer coordinates. Some segments can degenerate to points. Segments can intersect with each other, be nested in each other or even coincide.
The intersection of a sequence of segments is such a maximal set of points (not necesserily having integer coordinates) that each point lies within every segment from the sequence. If the resulting set isn't empty, then it always forms some continuous segment. The length of the intersection is the length of the resulting segment or 00 in case the intersection is an empty set.
For example, the intersection of segments [1;5][1;5] and [3;10][3;10] is [3;5][3;5] (length 22), the intersection of segments [1;5][1;5] and [5;7][5;7] is [5;5][5;5] (length 00) and the intersection of segments [1;5][1;5] and [6;6][6;6] is an empty set (length 00).
Your task is to remove exactly one segment from the given sequence in such a way that the intersection of the remaining (n−1)(n−1) segments has the maximal possible length.
The first line contains a single integer nn (2≤n≤3⋅1052≤n≤3⋅105) — the number of segments in the sequence.
Each of the next nn lines contains two integers lili and riri (0≤li≤ri≤1090≤li≤ri≤109) — the description of the ii-th segment.
Print a single integer — the maximal possible length of the intersection of (n−1)(n−1) remaining segments after you remove exactly one segment from the sequence.
4
1 3
2 6
0 4
3 3
1
5
2 6
1 3
0 4
1 20
0 4
2
3
4 5
1 2
9 20
0
2
3 10
1 5
7
In the first example you should remove the segment [3;3][3;3], the intersection will become [2;3][2;3] (length 11). Removing any other segment will result in the intersection [3;3][3;3] (length 00).
In the second example you should remove the segment [1;3][1;3] or segment [2;6][2;6], the intersection will become [2;4][2;4] (length 22) or [1;3][1;3] (length 22), respectively. Removing any other segment will result in the intersection [2;3][2;3] (length 11).
In the third example the intersection will become an empty set no matter the segment you remove.
In the fourth example you will get the intersection [3;10][3;10] (length 77) if you remove the segment [1;5][1;5] or the intersection [1;5][1;5] (length 44) if you remove the segment [3;10][3;10].
题意:已知n个区间,求删去一个区间后剩余的区间交的区域最大值
分析:求去掉某段区间后剩余的区间的相交区域,相当于求这个区间前面所有区间的相交区域和这个区间后的所有相交区域的交集
在开始的时候枚举出所有点,关于这点前的相交区域pre[i-1],关于这点后的相交区域pos[i+1]
然后枚举pre[i-1]与pos[i+1]相交区域的最大值
AC代码:
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <bitset>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
#define ls (r<<1)
#define rs (r<<1|1)
#define debug(a) cout << #a << " " << a << endl
using namespace std;
typedef long long ll;
const ll maxn = 3e5+10;
const double eps = 1e-8;
const ll mod = 1e9 + 7;
const ll inf = 1e9;
const double pi = acos(-1.0);
struct node {
ll x, y;
};
node a[maxn], pre[maxn], pos[maxn];
int main() {
ll n, maxle1 = 0, minri1 = 1e9+10, maxle2 = 0, minri2 = 1e9+10;
scanf("%lld",&n);
pos[n+1].y = pre[0].y = 1e9+10;
for( ll i = 1; i <= n; i ++ ) {
scanf("%lld%lld",&a[i].x,&a[i].y);
maxle1 = max(maxle1,a[i].x), minri1 = min(minri1,a[i].y);
pre[i].x = maxle1, pre[i].y = minri1;
}
for( ll i = n; i >= 1; i -- ) {
maxle2 = max(maxle2,a[i].x), minri2 = min(minri2,a[i].y);
pos[i].x = maxle2, pos[i].y = minri2;
}
ll ans = 0;
for( ll i = 1; i <= n; i ++ ) {
ll le = max(pre[i-1].x,pos[i+1].x), ri = min(pre[i-1].y,pos[i+1].y);
ans = max(ans,ri-le);
}
printf("%lld\n",ans);
return 0;
}
CF1029C Maximal Intersection 暴力枚举的更多相关文章
- F - Maximal Intersection --------暴力求解题
You are given n segments on a number line; each endpoint of every segment has integer coordinates. S ...
- CF1029C Maximal Intersection
https://www.luogu.org/problem/show?pid=CF1029C #include<bits/stdc++.h> using namespace std ; # ...
- 区间Dp 暴力枚举+动态规划 Hdu1081
F - 最大子矩形 Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u Submit Status Des ...
- Codeforces Round #506 (Div. 3) C. Maximal Intersection
C. Maximal Intersection time limit per test 3 seconds memory limit per test 256 megabytes input stan ...
- CodeForces 742B Arpa’s obvious problem and Mehrdad’s terrible solution (暴力枚举)
题意:求定 n 个数,求有多少对数满足,ai^bi = x. 析:暴力枚举就行,n的复杂度. 代码如下: #pragma comment(linker, "/STACK:1024000000 ...
- 2014牡丹江网络赛ZOJPretty Poem(暴力枚举)
/* 将给定的一个字符串分解成ABABA 或者 ABABCAB的形式! 思路:暴力枚举A, B, C串! */ 1 #include<iostream> #include<cstri ...
- HNU 12886 Cracking the Safe(暴力枚举)
题目链接:http://acm.hnu.cn/online/?action=problem&type=show&id=12886&courseid=274 解题报告:输入4个数 ...
- 51nod 1116 K进制下的大数 (暴力枚举)
题目链接 题意:中文题. 题解:暴力枚举. #include <iostream> #include <cstring> using namespace std; ; ; ch ...
- Codeforces Round #349 (Div. 1) B. World Tour 最短路+暴力枚举
题目链接: http://www.codeforces.com/contest/666/problem/B 题意: 给你n个城市,m条单向边,求通过最短路径访问四个不同的点能获得的最大距离,答案输出一 ...
随机推荐
- Android Studio "cannot resolve symbol R" 问题
初接触Android Studio,又遇到了 "cannot resolve symbol R"问题(以前在 Eclipse 也遇到过),网上方法不一,后来在stackoverfl ...
- 浅析scrapy与scrapy_redis区别
最近在工作中写了很多 scrapy_redis 分布式爬虫,但是回想 scrapy 与 scrapy_redis 两者区别的时候,竟然,思维只是局限在了应用方面,于是乎,搜索了很多相关文章介绍,这才搞 ...
- Spring中FactoryBean的作用和实现原理
BeanFactory与FactoryBean,相信很多刚翻看Spring源码的同学跟我一样很好奇这俩货怎么长得这么像,分别都是干啥用的.BeanFactory是Spring中Bean工厂的顶层接口, ...
- python创建虚拟环境(Windows)
>>>构建Python虚拟环境的目的是为了防止真实环境被破坏!!! >>>每一个项目建议用一个虚拟环境为了防止软件版本号冲突!!! 1.在终端切换到一个新的磁盘 如 ...
- Vue组件间通信-Vuex
上回说到Vue组件间通讯,最后留了一个彩蛋~~~Vuex.Vuex是另一种组件通讯的方法,这节来说说Vuex(store仓库). 首先Vuex需要安装,安装的方式有很多,在这里就不一一细说了.我是通过 ...
- DataOps系列丨数据的“资产负债表”与“现状”
作者:DataPipeline CEO 陈诚 <跨越鸿沟>的作者Geoffrey Moore曾说“没有数据,运营企业就像一个又聋又瞎的人在高速上开车一样”.数据的价值从未像现在这样被企业重 ...
- mcrp 对接软件换
如何配置UniMRCP Server的启动选项 UniMRCP Server的配置参数,比如:ASR server IP 地址.输出目录. 在哪儿设置这些自定义参数,在插件中如何获取这些参数. 修改 ...
- JAVA面向对象面试题带答案(墙裂推荐)
1) 在Java中,如果父类中的某些方法不包含任何逻辑,并且需要有子类重写,应该使用(c)关键字来申明父类的这些方法. a) Finalc b) Static c) Abstract d) Void2 ...
- Node.js 环境搭建及简单应用
Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行环境.Node.js 使用了一个事件驱动.非阻塞式 I/O 的模型.如果你想创建自己的服务,那么Node.js是一个非 ...
- DMP大数据营销
一.下载大数据营销APP 使用手机浏览器扫描二维码 二.使用大数据营销APP 1.打开app,如果手机没有打开蓝牙和GPS定位app会自动提示让您打开,若app没有提示请手动去打开蓝牙和GPS 2.搜 ...