Maximal Intersection
time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given nn segments on a number line; each endpoint of every segment has integer coordinates. Some segments can degenerate to points. Segments can intersect with each other, be nested in each other or even coincide.

The intersection of a sequence of segments is such a maximal set of points (not necesserily having integer coordinates) that each point lies within every segment from the sequence. If the resulting set isn't empty, then it always forms some continuous segment. The length of the intersection is the length of the resulting segment or 00 in case the intersection is an empty set.

For example, the intersection of segments [1;5][1;5] and [3;10][3;10] is [3;5][3;5] (length 22), the intersection of segments [1;5][1;5] and [5;7][5;7] is [5;5][5;5] (length 00) and the intersection of segments [1;5][1;5] and [6;6][6;6] is an empty set (length 00).

Your task is to remove exactly one segment from the given sequence in such a way that the intersection of the remaining (n−1)(n−1) segments has the maximal possible length.

Input

The first line contains a single integer nn (2≤n≤3⋅1052≤n≤3⋅105) — the number of segments in the sequence.

Each of the next nn lines contains two integers lili and riri (0≤li≤ri≤1090≤li≤ri≤109) — the description of the ii-th segment.

Output

Print a single integer — the maximal possible length of the intersection of (n−1)(n−1) remaining segments after you remove exactly one segment from the sequence.

Examples
input

Copy
4
1 3
2 6
0 4
3 3
output

Copy
1
input

Copy
5
2 6
1 3
0 4
1 20
0 4
output

Copy
2
input

Copy
3
4 5
1 2
9 20
output

Copy
0
input

Copy
2
3 10
1 5
output

Copy
7
Note

In the first example you should remove the segment [3;3][3;3], the intersection will become [2;3][2;3] (length 11). Removing any other segment will result in the intersection [3;3][3;3] (length 00).

In the second example you should remove the segment [1;3][1;3] or segment [2;6][2;6], the intersection will become [2;4][2;4] (length 22) or [1;3][1;3] (length 22), respectively. Removing any other segment will result in the intersection [2;3][2;3] (length 11).

In the third example the intersection will become an empty set no matter the segment you remove.

In the fourth example you will get the intersection [3;10][3;10] (length 77) if you remove the segment [1;5][1;5] or the intersection [1;5][1;5] (length 44) if you remove the segment [3;10][3;10].

题意:已知n个区间,求删去一个区间后剩余的区间交的区域最大值

分析:求去掉某段区间后剩余的区间的相交区域,相当于求这个区间前面所有区间的相交区域和这个区间后的所有相交区域的交集

  在开始的时候枚举出所有点,关于这点前的相交区域pre[i-1],关于这点后的相交区域pos[i+1]

  然后枚举pre[i-1]与pos[i+1]相交区域的最大值

AC代码:

#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <bitset>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
#define ls (r<<1)
#define rs (r<<1|1)
#define debug(a) cout << #a << " " << a << endl
using namespace std;
typedef long long ll;
const ll maxn = 3e5+10;
const double eps = 1e-8;
const ll mod = 1e9 + 7;
const ll inf = 1e9;
const double pi = acos(-1.0);
struct node {
ll x, y;
};
node a[maxn], pre[maxn], pos[maxn];
int main() {
ll n, maxle1 = 0, minri1 = 1e9+10, maxle2 = 0, minri2 = 1e9+10;
scanf("%lld",&n);
pos[n+1].y = pre[0].y = 1e9+10;
for( ll i = 1; i <= n; i ++ ) {
scanf("%lld%lld",&a[i].x,&a[i].y);
maxle1 = max(maxle1,a[i].x), minri1 = min(minri1,a[i].y);
pre[i].x = maxle1, pre[i].y = minri1;
}
for( ll i = n; i >= 1; i -- ) {
maxle2 = max(maxle2,a[i].x), minri2 = min(minri2,a[i].y);
pos[i].x = maxle2, pos[i].y = minri2;
}
ll ans = 0;
for( ll i = 1; i <= n; i ++ ) {
ll le = max(pre[i-1].x,pos[i+1].x), ri = min(pre[i-1].y,pos[i+1].y);
ans = max(ans,ri-le);
}
printf("%lld\n",ans);
return 0;
}

  

CF1029C Maximal Intersection 暴力枚举的更多相关文章

  1. F - Maximal Intersection --------暴力求解题

    You are given n segments on a number line; each endpoint of every segment has integer coordinates. S ...

  2. CF1029C Maximal Intersection

    https://www.luogu.org/problem/show?pid=CF1029C #include<bits/stdc++.h> using namespace std ; # ...

  3. 区间Dp 暴力枚举+动态规划 Hdu1081

    F - 最大子矩形 Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u Submit Status Des ...

  4. Codeforces Round #506 (Div. 3) C. Maximal Intersection

    C. Maximal Intersection time limit per test 3 seconds memory limit per test 256 megabytes input stan ...

  5. CodeForces 742B Arpa’s obvious problem and Mehrdad’s terrible solution (暴力枚举)

    题意:求定 n 个数,求有多少对数满足,ai^bi = x. 析:暴力枚举就行,n的复杂度. 代码如下: #pragma comment(linker, "/STACK:1024000000 ...

  6. 2014牡丹江网络赛ZOJPretty Poem(暴力枚举)

    /* 将给定的一个字符串分解成ABABA 或者 ABABCAB的形式! 思路:暴力枚举A, B, C串! */ 1 #include<iostream> #include<cstri ...

  7. HNU 12886 Cracking the Safe(暴力枚举)

    题目链接:http://acm.hnu.cn/online/?action=problem&type=show&id=12886&courseid=274 解题报告:输入4个数 ...

  8. 51nod 1116 K进制下的大数 (暴力枚举)

    题目链接 题意:中文题. 题解:暴力枚举. #include <iostream> #include <cstring> using namespace std; ; ; ch ...

  9. Codeforces Round #349 (Div. 1) B. World Tour 最短路+暴力枚举

    题目链接: http://www.codeforces.com/contest/666/problem/B 题意: 给你n个城市,m条单向边,求通过最短路径访问四个不同的点能获得的最大距离,答案输出一 ...

随机推荐

  1. 【Docker】unauthorized: incorrect username or password

    昨天朋友推荐玩玩 Docker.虽然之前就听过,但一直不清楚干嘛的,也没去搞过,虽然前段时间就装了,但一直没打开.这两天刚开始熟悉,就遇到了点小问题.一番 Google 之后解决了,记录一下. CLI ...

  2. asp.net ashx处理程序中switch case的替代方案总结

    目录 1.用委托字典代替switch...case; 2.利用反射替代switch...case: 3.比较两种方案 4.其他方案 4.说明 5.参考 在开发 asp.net 项目中,通常使用一般处理 ...

  3. Apple放大绝进行反取证

    取证说穿了其实就是攻防,这本是正义与邪恶的对决,亦即执法单位与嫌疑犯两者之间的事,但现实生活中要比这复杂多了. 怎么说呢?举个例子大家便理解了.取证人员费尽心思,用尽各种手法,努力地想要自手机上提取重 ...

  4. 大型系列课程之-七夕告白之旅Electron篇

    上一篇分享了一下vbs的撩妹攻略,但细心的兄弟会发现,这种脚本式的攻城方案并不得心应手,有很多妹子害怕是病毒根本不敢点击,而且这个脚本界面风格也不漂亮,不能轻易打动妹子的心,怎么破,小编这次在为各位老 ...

  5. HTML 第5章CSS3美化网页元素

    <span>标签: <span>标签是用来组合HTML文档中的行内元素,它没有固定的格式表示. 字体样式: 属性名                               ...

  6. 本地(任意)时间戳转化(转换)标准时间格式 js(eg:2019-05-07 17:49:12)

    <script> function getLocalTime(timestamp) { // 如果以秒为单位 // var dateObj = new Date(timestamp * 1 ...

  7. (二十九)c#Winform自定义控件-文本框(二)

    前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. 开源地址:https://gitee.com/kwwwvagaa/net_winform_custom_control ...

  8. 通过Blazor使用C#开发SPA单页面应用程序(4) - Ant Design Button

    前面学习了Blazor的特点.环境搭建及基础知识,现在我们尝试的做个实际的组件. Ant Design是蚂蚁金服是基于Ant Design设计体系的 UI 组件库,主要用于研发企业级中后台产品.目前官 ...

  9. 四、Ansible的Galaxy包管理器

    一.什么是Ansible Galaxy? Ansible Galaxy是Ansible的第三方插件管理和安装工具,其实就是包管理软件.作用类似于Ubuntu的apt,Centos的yum,Python ...

  10. Flask框架(二)—— 反向解析、配置信息、路由系统、模板、请求响应、闪现、session

    Flask框架(二)—— 反向解析.配置信息.路由系统.模板.请求响应.闪现.session 目录 反向解析.配置信息.路由系统.模板.请求响应.闪现.session 一.反向解析 1.什么是反向解析 ...