There is No Alternative CSU - 2097 最小生成树
Description
ICPC (Isles of Coral Park City) consist of several beautiful islands.
The citizens requested construction of bridges between islands to resolve inconveniences of using boats between islands, and they demand that all the islands should be reachable from any other islands via one or more bridges.
The city mayor selected a number of pairs of islands, and ordered a building company to estimate the costs to build bridges between the pairs. With this estimate, the mayor has to decide the set of bridges to build, minimizing the total construction cost.
However, it is difficult for him to select the most cost-efficient set of bridges among those connecting all the islands. For example, three sets of bridges connect all the islands for the Sample Input 1. The bridges in each set are expressed by bold edges in Figure F.1.
Figure F.1. Three sets of bridges connecting all the islands for Sample Input 1
As the first step, he decided to build only those bridges which are contained in all the sets of bridges to connect all the islands and minimize the cost. We refer to such bridges as no alternative bridges. In Figure F.2, no alternative bridges are drawn as thick edges for the Sample Input 1, 2 and 3.
Write a program that advises the mayor which bridges are no alternative bridges for the given input.
Input
The input consists of several tests case.
Figure F.2. No alternative bridges for Sample Input 1, 2 and 3
For each test, the first line contains two positive integers N and M . N represents the number of islands and each island is identified by an integer 1 through N. M represents the number of the pairs of islands between which a bridge may be built.
Each line of the next M lines contains three integers Si, Di and Ci (1 ≤ i ≤ M) which represent that it will cost Ci to build the bridge between islands Si and Di. You may assume 3 ≤ N ≤ 500, N − 1 ≤ M ≤ min(50000, N(N − 1)/2), 1 ≤ Si < Di ≤ N, and 1 ≤ Ci ≤ 10000. No two bridges connect the same pair of two islands, that is, if i ≠ j and Si = Sj , then Di ≠ Dj. If all the candidate bridges are built, all the islands are reachable from any other islands via one or more bridges.
Output
Output two integers, which mean the number of no alternative bridges and the sum of their construction cost, separated by a space.
Sample Input
4 4
1 2 3
1 3 3
2 3 3
2 4 3 4 4
1 2 3
1 3 5
2 3 3
2 4 3 4 4
1 2 3
1 3 1
2 3 3
2 4 3 3 3
1 2 1
2 3 1
1 3 1
Sample Output
1 3
3 9
2 4
0 0 题意是建桥,然后求最小建桥方案中哪些桥是必须要留着的,求这些桥的个数和总花费
先求出最小生成树,然后再去掉一条条边,看哪些边去掉后结果和最小生成树的结果不一样,那么这些边就是要留着的
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<string>
#include<vector>
#include<cmath>
#define debug(a) cout << #a << " " << a << endl
using namespace std;
typedef long long ll;
const ll mod = 1e9 + ;
const ll maxn = 1e5 + ;
int n, m, num, cnt, result, pre[maxn], b[maxn], vis[maxn];
struct node {
int x, y, z;
};
node edge[maxn];
bool cmp( node p, node q ) {
return p.z < q.z;
}
void init() {
for( int i = ; i <= n; i ++ ) {
pre[i] = i;
}
}
int find( int x ) {
int r = x;
while( r != pre[r] ) {
r = pre[r];
}
int i = x, j;
while( pre[i] != r ) {
j = pre[i];
pre[i] = r;
i = j;
}
return r;
}
void join( int x, int y ) {
int fx = find(x), fy = find(y);
if( fx != fy ) {
pre[fx] = fy;
}
}
int kruskal( int flag ) {
int sum = ;
for( int i = ; i < m; i ++ ) {
if( vis[i] ) {
continue;
}
int fx = find( edge[i].x );
int fy = find( edge[i].y );
if( fx != fy ) {
sum += edge[i].z;
pre[fx] = fy;
if( !flag ) {
b[cnt++] = i;
}
}
}
return sum;
}
int main() {
std::ios::sync_with_stdio(false);
while( cin >> n >> m ) {
memset( vis, , sizeof(vis) );
for( int i = ; i < m; i ++ ) {
cin >> edge[i].x >> edge[i].y >> edge[i].z;
}
sort( edge, edge + m, cmp );
cnt = , num = , result = ;
init();
int ans = kruskal();
for( int i = ; i < cnt; i ++ ) {
init();
vis[b[i]] = ;
if( kruskal() != ans ) {
result += edge[b[i]].z;
num ++;
}
vis[b[i]] = ;
}
cout << num << " " << result << endl;
}
return ;
}
There is No Alternative CSU - 2097 最小生成树的更多相关文章
- CSU 1541 There is No Alternative (最小生成树+枚举)
题目链接:传送门 题意: 有n个点.m条边.要使n个点所有连起来且要花费最小.问有哪些边是必需要连的. 分析: 要使花费最小肯定是做最小生成树.可是题目要求哪些边是必需要用的.我们能够 这样思考,我们 ...
- CSU 1116 Kingdoms(枚举最小生成树)
题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1116 解题报告:一个国家有n个城市,有m条路可以修,修每条路要一定的金币,现在这个国家只 ...
- There is No Alternative~最小生成树变形
Description ICPC (Isles of Coral Park City) consist of several beautiful islands. The citizens reque ...
- Codeforces Gym 100803F There is No Alternative 暴力Kruskal
There is No Alternative 题目连接: http://codeforces.com/gym/100803/attachments Description ICPC (Isles o ...
- 关于ACM,关于CSU
原文地址:http://tieba.baidu.com/p/2432943599 前言: 即将进入研二,ACM的事情也渐渐远去,记忆终将模糊,但那段奋斗永远让人热血沸腾.开个贴讲讲ACM与中南的故事, ...
- CSUOJ 1541 There is No Alternative
There is No Alternative Time Limit: 3000ms Memory Limit: 262144KB This problem will be judged on Aiz ...
- 最小生成树(Kruskal算法-边集数组)
以此图为例: package com.datastruct; import java.util.Scanner; public class TestKruskal { private static c ...
- 代码的坏味道(9)——异曲同工的类(Alternative Classes with Different Interfaces)
坏味道--异曲同工的类(Alternative Classes with Different Interfaces) 特征 两个类中有着不同的函数,却在做着同一件事. 问题原因 这种情况往往是因为:创 ...
- 最小生成树计数 bzoj 1016
最小生成树计数 (1s 128M) award [问题描述] 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一 ...
随机推荐
- 百度网盘 人工智能书籍【Tensorflow和深度学习】
链接:https://pan.baidu.com/s/1ejCvwn08ILI2fMhBEdXR8w 提取码:6pk9
- 曹工杂谈:Linux服务器上,Spring Boot 原地修改 jar 包配置文件/替换class文件,免去重复上传的麻烦
一.前言 相信很多同学有这样的需求,现在很多公司都有多地的研发中心,经常需要跨地区部署,比如,博主人在成都,但是服务器是北京的.一般城市间网络都不怎么好,上传一个几十兆的jar包那是真的慢,别说现在微 ...
- memcached.c 源码分析
上文分析了memcached的autoconf过程以及configure, make过程,可以看到,memcached可执行文件是由memcached-memcached.o以及其他文件连接后编译出来 ...
- 在表格中添加text便加框
private void createTableText(Table table) { TableEditor editor = new TableEditor(table); for (int i ...
- Unity经典游戏教程之:合金弹头
版权声明: 本文原创发布于博客园"优梦创客"的博客空间(网址:http://www.cnblogs.com/raymondking123/)以及微信公众号"优梦创客&qu ...
- Discuz论坛 自动加好友留言程序
目录 [隐藏] 1 思路: 2 代码: 2.1 登录,获取Cookie: 2.2 获取FormHash: 2.3 发送加好友请求并留言: 思路: 一波未平一波又起, 拿到这个需求的时候对我来说还是有挑 ...
- Hadoop学习(8)-scala环境配置及简单使用
学习scala的原因主要是因为以后要学习spark. scala是运行在java虚拟机上的,它是一种面向对象和函数式编程结合的语言,并兼容java程序 相对于java更简单 安装scala前提你要保证 ...
- C语言编程入门之--第五章C语言基本运算和表达式-part1
导读:程序要完成高级功能,首先要能够做到基本的加减乘除.本章从程序中变量的概念开始,结合之前学的输出函数和新介绍的输入函数制作简单人机交互程序,然后讲解最基础的加减法运算,自制简单计算器程序练手. 5 ...
- http客户端-性能比较系列-第二篇-多线程
系列文章: 单线程性能测试:https://www.cnblogs.com/victor2302/p/11077208.html 多线程性能测试:https://www.cnblogs.com/vic ...
- iview自定义实现多级表头
最近更新: 2018-07-19 注意:最新版iview已经提供多级表头功能 参考 原理:利用多个Table组件通过显示和隐藏thead和tbody来拼接表格(较粗暴) html <div st ...