word2vec:主要概念和流程
1.单词的向量化表示
一般来讲,词向量主要有两种形式,分别是稀疏向量和密集向量。
所谓稀疏向量,又称为one-hot representation,就是用一个很长的向量来表示一个词,向量的长度为词典的大小N,向量的分量只有一个1,其他全为0,1的位置对应该词在词典中的索引。
至于密集向量,又称distributed representation,即分布式表示。最早由Hinton提出,可以克服one-hot representation的上述缺点,基本思路是通过训练将每个词映射成一个固定长度的短向量,所有这些向量就构成一个词向量空间,每一个向量可视为该空间上的一个点。
2.word2vec的语言模型
所谓的语言模型,就是指对自然语言进行假设和建模,使得能够用计算机能够理解的方式来表达自然语言。word2vec采用的是n元语法模型(n-gram model),即假设一个词只与周围n个词有关,而与文本中的其他词无关。
CBOW模型能够根据输入周围n-1个词来预测出这个词本身,而skip-gram模型能够根据词本身来预测周围有哪些词。也就是说,CBOW模型的输入是某个词A周围的n个单词的词向量之和,输出是词A本身的词向量;而skip-gram模型的输入是词A本身,输出是词A周围的n个单词的词向量。
3.基于Hierarchical Softmax的模型
理论上说,无论是CBOW模型还是skip-gram模型,其具体的实现都可以用神经网络来完成。问题在于,这样做的计算量太大了。我们可以简略估计一下。首先定义一些变量的含义[3]:
(1) n : 一个词的上下文包含的词数,与n-gram中n的含义相同
(2) m : 词向量的长度,通常在10~100
(3) h : 隐藏层的规模,一般在100量级
(4) N :词典的规模,通常在1W~10W
(5) T : 训练文本中单词个数
以CBOW为例,输入层为n-1个单词的词向量,长度为m(n-1),隐藏层的规模为h,输出层的规模为N。那么前向的时间复杂度就是o(m(n-1)h+hN) = o(hN) 这还是处理一个词所需要的复杂度。如果要处理所有文本,则需要o(hNT)的时间复杂度。这个是不可接受的。同时我们也注意到,o(hNT)之中,h和T的值相对固定,想要对其进行优化,主要还是应该从N入手。而输出层的规模之所以为N,是因为这个神经网络要完成的是N选1的任务。那么可不可以减小N的值呢?答案是可以的。解决的思路就是将一次分类分解为多次分类,这也是Hierarchical Softmax的核心思想。举个栗子,有[1,2,3,4,5,6,7,8]这8个分类,想要判断词A属于哪个分类,我们可以一步步来,首先判断A是属于[1,2,3,4]还是属于[5,6,7,8]。如果判断出属于[1,2,3,4],那么就进一步分析是属于[1,2]还是[3,4],以此类推,如图中所示的那样。这样一来,就把单个词的时间复杂度从o(h*N)降为o(h*logN),更重要的减少了内存的开销。
4.word2vec的大概流程
至此,word2vec中的主要组件都大概提到过一遍,现在应该把它们串起来,大概了解一下word2vec的运行流程。
(1) 分词 / 词干提取和词形还原。 中文和英文的nlp各有各的难点,中文的难点在于需要进行分词,将一个个句子分解成一个单词数组。而英文虽然不需要分词,但是要处理各种各样的时态,所以要进行词干提取和词形还原。
(2) 构造词典,统计词频。这一步需要遍历一遍所有文本,找出所有出现过的词,并统计各词的出现频率。
(3) 构造树形结构。依照出现概率构造Huffman树。如果是完全二叉树,则简单很多,后面会仔细解释。需要注意的是,所有分类都应该处于叶节点,像下图显示的那样[4]
(4)生成节点所在的二进制码。拿上图举例,22对应的二进制码为00,而17对应的是100。也就是说,这个二进制码反映了节点在树中的位置,就像门牌号一样,能按照编码从根节点一步步找到对应的叶节点。
(5) 初始化各非叶节点的中间向量和叶节点中的词向量。树中的各个节点,都存储着一个长为m的向量,但叶节点和非叶结点中的向量的含义不同。叶节点中存储的是各词的词向量,是作为神经网络的输入的。而非叶结点中存储的是中间向量,对应于神经网络中隐含层的参数,与输入一起决定分类结果。
(6) 训练中间向量和词向量。对于CBOW模型,首先将词A附近的n-1个词的词向量相加作为系统的输入,并且按照词A在步骤4中生成的二进制码,一步步的进行分类并按照分类结果训练中间向量和词向量。举个栗子,对于绿17节点,我们已经知道其二进制码是100。那么在第一个中间节点应该将对应的输入分类到右边。如果分类到左边,则表明分类错误,需要对向量进行修正。第二个,第三个节点也是这样,以此类推,直到达到叶节点。因此对于单个单词来说,最多只会改动其路径上的节点的中间向量,而不会改动其他节点。
word2vec:主要概念和流程的更多相关文章
- MVC基本概念和流程
MVC基本概念和流程 MVC的概念 Model(模型):包含数据和行为.不过现在一般都分离开来:Value Object(数据) 和 服务层(行为). View(视图):负责进行模型的展示,一般就是展 ...
- Git基本概念,流程,分支,标签及常用命令
Git基本概念,流程,分支,标签及常用命令 Git一张图 Git基本概念 仓库(Repository) 分支(Branch) Git工作流程 Git分支管理(branch) 列出分支 删除分支 分支合 ...
- MySQL事务概念与流程和索引控制
MySQL事务概念与流程和索引控制 视图 1.什么是视图 我们在执行SQL语句其实就是对表进行操作,所得到的其实也是一张表,而我们需要经常对这些表进行操作,拼接什么的都会产生一张虚拟表,我们可以基于该 ...
- (一)spring MVC基本概念和流程
MVC的概念 Model(模型):包含数据和行为.不过现在一般都分离开来:Value Object(数据) 和 服务层(行为). View(视图):负责进行模型的展示,一般就是展示给用户的界面. Co ...
- OpenShift S2I 概念及流程
S2I 概念 S2I(Source To Image)即从源码到镜像的一个过程,OpenShift 将它作为基础功能提供给用户,包含 S2I CLI 工具 与 S2I 流程.通过这些工具和既定流程,能 ...
- scrapy的基础概念和流程
1. 什么是scrapy Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架,我们只需要实现少量的代码,就能够快速的抓取. Scrapy 使用了Twisted['twɪstɪd]异步网 ...
- 考研部分概念和流程(若不全和错误可提示我补充,另考研帮app推荐)
上大学必须经过全国统一高考,而就读硕士研究生的途径相对而言要多一些,也更灵活一些.已经工作的人,除了放弃工作报考研究生以外,还可以不脱产申请攻读学位,或申请单独考试.不脱产申请攻读学位,通俗的讲,就是 ...
- 机器学习算法实现解析——word2vec源代码解析
在阅读本文之前,建议首先阅读"简单易学的机器学习算法--word2vec的算法原理"(眼下还没公布).掌握例如以下的几个概念: 什么是统计语言模型 神经概率语言模型的网络结构 CB ...
- word2vec 小测试
Bag-of-words Model Previous state-of-the-art document representations were based on the bag-of-words ...
随机推荐
- fenby C语言 p7
/*小小加法计算器*/=函数功能说明;(多行) //=注释:(一行) P8 比较 #include <stdio.h>int main(){ int a=10,b=20; if(a< ...
- Oauth 2.0学习
OAuth是一个关于授权(authorization)的开放网络标准,在全世界得到广泛应用,目前的版本是2.0版. 本文对OAuth 2.0的设计思路和运行流程,做一个简明通俗的解释,主要参考材料为R ...
- 使用Spring Data JPA进行数据分页与排序
一.导读 如果一次性加载成千上万的列表数据,在网页上显示将十分的耗时,用户体验不好.所以处理较大数据查询结果展现的时候,分页查询是必不可少的.分页查询必然伴随着一定的排序规则,否则分页数据的状态很难控 ...
- mha格式的CT体数据转为jpg切片
mha格式的CT体数据转为jpg切片 mha格式 .mha文件是一种体数据的存储格式,由一个描述数据的头和数据组成,一般我们拿到的原始医学影像的数据是.dcm也就是dicom文件,dicom文件很复杂 ...
- 汇编实战准备:DOS调用命令
mov dx,offset message mov ah, int 21h 将message的偏移地址赋值给dx,之后 MOV AH,9 INT 21H 调用DOS功能,该功能为显示打印DS:DX地址 ...
- CPS Tester
将测出10s的平均cps值 在窗内点击即可 github已编译程序:https://github.com/Ice-watermelon233/cps-tester #include <bits/ ...
- Pandas 计算工具介绍
# 导入相关库 import numpy as np import pandas as pd 统计函数 最常见的计算工具莫过于一些统计函数了.首先构建一个包含了用户年龄与收入的 DataFrame i ...
- vue自定义长按指令
1.前言 在word中,当我们需要删除一大段文本的时候,我们按一下键盘上的退格键,就会删除一个字,当我们长按住退格键时,就会连续不停的删除,这就是键盘按键的长按功能.那么我们也想在网页中让一个按钮也具 ...
- 奶牛邻居——treap+契比雪夫距离+并查集
题目描述 了解奶牛们的人都知道,奶牛喜欢成群结队.观察约翰的N(1≤N≤100000)只奶牛,你会发现她们已经结成了几个“群”. 每只奶牛在吃草的时候有一个独一无二的位置坐标Xi,Yi(l≤Xi,Yi ...
- Redis中的键值过期操作
1.过期设置 Redis 中设置过期时间主要通过以下四种方式: expire key seconds:设置 key 在 n 秒后过期: pexpire key milliseconds:设置 key ...