1.单词的向量化表示

一般来讲,词向量主要有两种形式,分别是稀疏向量和密集向量。

所谓稀疏向量,又称为one-hot representation,就是用一个很长的向量来表示一个词,向量的长度为词典的大小N,向量的分量只有一个1,其他全为0,1的位置对应该词在词典中的索引。

至于密集向量,又称distributed representation,即分布式表示。最早由Hinton提出,可以克服one-hot representation的上述缺点,基本思路是通过训练将每个词映射成一个固定长度的短向量,所有这些向量就构成一个词向量空间,每一个向量可视为该空间上的一个点。

2.word2vec的语言模型

所谓的语言模型,就是指对自然语言进行假设和建模,使得能够用计算机能够理解的方式来表达自然语言。word2vec采用的是n元语法模型(n-gram model),即假设一个词只与周围n个词有关,而与文本中的其他词无关。

CBOW模型能够根据输入周围n-1个词来预测出这个词本身,而skip-gram模型能够根据词本身来预测周围有哪些词。也就是说,CBOW模型的输入是某个词A周围的n个单词的词向量之和,输出是词A本身的词向量;而skip-gram模型的输入是词A本身,输出是词A周围的n个单词的词向量。

3.基于Hierarchical Softmax的模型

理论上说,无论是CBOW模型还是skip-gram模型,其具体的实现都可以用神经网络来完成。问题在于,这样做的计算量太大了。我们可以简略估计一下。首先定义一些变量的含义[3]: 
(1) n : 一个词的上下文包含的词数,与n-gram中n的含义相同 
(2) m : 词向量的长度,通常在10~100 
(3) h : 隐藏层的规模,一般在100量级 
(4) N :词典的规模,通常在1W~10W 
(5) T : 训练文本中单词个数

以CBOW为例,输入层为n-1个单词的词向量,长度为m(n-1),隐藏层的规模为h,输出层的规模为N。那么前向的时间复杂度就是o(m(n-1)h+hN) = o(hN) 这还是处理一个词所需要的复杂度。如果要处理所有文本,则需要o(hNT)的时间复杂度。这个是不可接受的。同时我们也注意到,o(hNT)之中,h和T的值相对固定,想要对其进行优化,主要还是应该从N入手。而输出层的规模之所以为N,是因为这个神经网络要完成的是N选1的任务。那么可不可以减小N的值呢?答案是可以的。解决的思路就是将一次分类分解为多次分类,这也是Hierarchical Softmax的核心思想。举个栗子,有[1,2,3,4,5,6,7,8]这8个分类,想要判断词A属于哪个分类,我们可以一步步来,首先判断A是属于[1,2,3,4]还是属于[5,6,7,8]。如果判断出属于[1,2,3,4],那么就进一步分析是属于[1,2]还是[3,4],以此类推,如图中所示的那样。这样一来,就把单个词的时间复杂度从o(h*N)降为o(h*logN),更重要的减少了内存的开销。

4.word2vec的大概流程

至此,word2vec中的主要组件都大概提到过一遍,现在应该把它们串起来,大概了解一下word2vec的运行流程。

(1) 分词 / 词干提取和词形还原。 中文和英文的nlp各有各的难点,中文的难点在于需要进行分词,将一个个句子分解成一个单词数组。而英文虽然不需要分词,但是要处理各种各样的时态,所以要进行词干提取和词形还原。 
(2) 构造词典,统计词频。这一步需要遍历一遍所有文本,找出所有出现过的词,并统计各词的出现频率。 
(3) 构造树形结构。依照出现概率构造Huffman树。如果是完全二叉树,则简单很多,后面会仔细解释。需要注意的是,所有分类都应该处于叶节点,像下图显示的那样[4]

(4)生成节点所在的二进制码。拿上图举例,22对应的二进制码为00,而17对应的是100。也就是说,这个二进制码反映了节点在树中的位置,就像门牌号一样,能按照编码从根节点一步步找到对应的叶节点。 
(5) 初始化各非叶节点的中间向量和叶节点中的词向量。树中的各个节点,都存储着一个长为m的向量,但叶节点和非叶结点中的向量的含义不同。叶节点中存储的是各词的词向量,是作为神经网络的输入的。而非叶结点中存储的是中间向量,对应于神经网络中隐含层的参数,与输入一起决定分类结果。 
(6) 训练中间向量和词向量。对于CBOW模型,首先将词A附近的n-1个词的词向量相加作为系统的输入,并且按照词A在步骤4中生成的二进制码,一步步的进行分类并按照分类结果训练中间向量和词向量。举个栗子,对于绿17节点,我们已经知道其二进制码是100。那么在第一个中间节点应该将对应的输入分类到右边。如果分类到左边,则表明分类错误,需要对向量进行修正。第二个,第三个节点也是这样,以此类推,直到达到叶节点。因此对于单个单词来说,最多只会改动其路径上的节点的中间向量,而不会改动其他节点。

word2vec:主要概念和流程的更多相关文章

  1. MVC基本概念和流程

    MVC基本概念和流程 MVC的概念 Model(模型):包含数据和行为.不过现在一般都分离开来:Value Object(数据) 和 服务层(行为). View(视图):负责进行模型的展示,一般就是展 ...

  2. Git基本概念,流程,分支,标签及常用命令

    Git基本概念,流程,分支,标签及常用命令 Git一张图 Git基本概念 仓库(Repository) 分支(Branch) Git工作流程 Git分支管理(branch) 列出分支 删除分支 分支合 ...

  3. MySQL事务概念与流程和索引控制

    MySQL事务概念与流程和索引控制 视图 1.什么是视图 我们在执行SQL语句其实就是对表进行操作,所得到的其实也是一张表,而我们需要经常对这些表进行操作,拼接什么的都会产生一张虚拟表,我们可以基于该 ...

  4. (一)spring MVC基本概念和流程

    MVC的概念 Model(模型):包含数据和行为.不过现在一般都分离开来:Value Object(数据) 和 服务层(行为). View(视图):负责进行模型的展示,一般就是展示给用户的界面. Co ...

  5. OpenShift S2I 概念及流程

    S2I 概念 S2I(Source To Image)即从源码到镜像的一个过程,OpenShift 将它作为基础功能提供给用户,包含 S2I CLI 工具 与 S2I 流程.通过这些工具和既定流程,能 ...

  6. scrapy的基础概念和流程

    1. 什么是scrapy Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架,我们只需要实现少量的代码,就能够快速的抓取. Scrapy 使用了Twisted['twɪstɪd]异步网 ...

  7. 考研部分概念和流程(若不全和错误可提示我补充,另考研帮app推荐)

    上大学必须经过全国统一高考,而就读硕士研究生的途径相对而言要多一些,也更灵活一些.已经工作的人,除了放弃工作报考研究生以外,还可以不脱产申请攻读学位,或申请单独考试.不脱产申请攻读学位,通俗的讲,就是 ...

  8. 机器学习算法实现解析——word2vec源代码解析

    在阅读本文之前,建议首先阅读"简单易学的机器学习算法--word2vec的算法原理"(眼下还没公布).掌握例如以下的几个概念: 什么是统计语言模型 神经概率语言模型的网络结构 CB ...

  9. word2vec 小测试

    Bag-of-words Model Previous state-of-the-art document representations were based on the bag-of-words ...

随机推荐

  1. Spring(三)面向切面编程(AOP)

    在直系学长曾经的指导下,参考了直系学长的博客(https://www.cnblogs.com/WellHold/p/6655769.html)学习Spring的另一个核心概念--面向切片编程,即AOP ...

  2. 修改linux系统history命令的条数和格式

    在一次测试环境遇到的情况,发现服务莫名其妙挂了,以为服务有bug,查了一下午,后来一个同事说,是我把服务关了啊.... 是可忍孰不可忍,原生的history命令,只能看到输入的命令历史,看不到什么时候 ...

  3. Connection activation failed Device not managed by NetworkManager

    1)查看NetworkManager服务是否启动 ps aux |grep NetworkManager 使用service NetworkManager start 命令启动该网络管理程序 2) 一 ...

  4. C# 8 - 其它新特性

    其它关于C# 8和.NET Core 3.0新特性的文章: C# 8 - Nullable Reference Types 可空引用类型 C# 8 - 模式匹配 C# 8 - Range 和 Inde ...

  5. 第七章 文件与I/O(4)

    文件共享 打开文件内核数据结构 一个进程两次打开同一个文件 一个进程能打开1024个文件描述符,没打开一个文件,内核会生成一个文件表,文件表中的v节点指针指向v节点表,v节点部分信息就是stat函数返 ...

  6. python设置环境变量(临时和永久)

    设置临时环境变量 import os # 设置环境变量 os.environ['WORKON_HOME']="value" # 获取环境变量方法1 os.environ.get(' ...

  7. 一个九位数-python

    有一个9位数由1~9的9个数字组成, 每个数字只能出现一次:其第一位能被1整除, 前两位能被2整除, 前三位能被3整除...依次类推,前9位能被9整除.所有的9位数中,只有一个数字满足这些条件,请你输 ...

  8. NOIP模拟 40

    考得更嘛也不是了. 不过如果不犯任何低错的话.. T1 我神奇地想要缩减码量 比如想把尽量多的$b[i]-1$省掉 于是求$b[i]$的时候先减了个一 本来是正的 减完就忘了他应该是非负的了 于是线段 ...

  9. xms跨平台基础框架 - 基于.netcore

    背景 敝人经过多年开发,数百个项目“打磨(折磨)”,各种国内外框架平台都有涉及,没有一款称心顺手的,原因有三,一是设计反人类,二是不开源根本无法突破框架限制,三是即使开源也是阉割版,然后xms就开始萌 ...

  10. linux 自启动 | 三种方式自启动

    linux 实现自启动有多种方式,通过Linux 底层启动原理介绍,便可以理解以下几种方式 这里简单介绍一下这几种方式 一.自定义开机程序   /etc/rc.d/rc.local  1.vim  / ...