[BZOJ1833][ZJOI2010]数字计数
Description
Input
Output
Sample Input
Sample Output
HINT
30%的数据中,a<=b<=10^6;
100%的数据中,a<=b<=10^12。
Source
这种裸的数位Dp只有我这蒟蒻不会做吧...
设f[i][j][k]为长度为i, 开头为j, k这个数字出现的次数。
然后就不会了。
#include <iostream>
#include <cstdio>
using namespace std; typedef long long ll;
struct date
{
ll num[];
friend date operator + (date a, date b)
{
date t;
for (int i = ; i <= ; i ++) t.num[i] = b.num[i] + a.num[i];
return t;
}
}f[][];
ll a, b, t[];
date cal(ll x)
{
date ans;
for (int i = ; i <= ; i ++) ans.num[i] = ;
if(!x){ans.num[]=;return ans;}
int len = ;
while(t[len] > x) len--;
for (int i = ; i < len ; i ++)
for (int j = ; j <= ; j ++)
ans = ans + f[i][j];
ans.num[]++;
int lim = x / t[len];
for (int i = ; i < lim ; i ++) ans = ans + f[len][i];
x %= t[len];
ans.num[lim] += x + ;
for (int i = len - ; i ; i --)
{
lim = x / t[i];
for (int j = ; j < lim ; j ++) ans = ans + f[i][j];
x %= t[i];
ans.num[lim] += x + ;
}
return ans;
} int main()
{
t[] = ;for (int i = ; i <= ; i ++) t[i] = t[i-] * ;
for (int i = ; i <= ; i ++) f[][i].num[i] = ;
for (int i = ; i <= ; i ++)
{
for (int x = ; x <= ; x ++)
{
for (int y = ; y <= ; y ++)
{
f[i][y] = f[i][y] + f[i-][x];
f[i][y].num[y] += t[i-];
}
}
}
scanf("%lld%lld", &a, &b);
date t1 = cal(a-), t2 = cal(b);
for (int i = ; i <= ; i ++) printf("%lld ",t2.num[i] - t1.num[i]);
printf("%lld", t2.num[] - t1.num[]);
return ;
}
[BZOJ1833][ZJOI2010]数字计数的更多相关文章
- [bzoj1833][ZJOI2010]数字计数(数位DP)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1833 分析:简单的数位DP f[i][j][k]表示在i位数.最高位j的所有数字中k的 ...
- 【洛谷】2602: [ZJOI2010]数字计数【数位DP】
P2602 [ZJOI2010]数字计数 题目描述 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入输出格式 输入格式: 输入文件中仅包含一行两个整数a ...
- P2602 [ZJOI2010]数字计数(递推)
P2602 [ZJOI2010]数字计数 思路: 首先考虑含有前导0的情况,可以发现在相同的\(i\)位数中,每个数的出现次数都是相等的.所以我们可以设\(f(i)\)为\(i\)位数每个数的出现次数 ...
- P2602 [ZJOI2010]数字计数&P1239 计数器&P4999 烦人的数学作业
P2602 [ZJOI2010]数字计数 题解 DFS 恶心的数位DP 对于这道题,我们可以一个数字一个数字的求 也就是分别统计区间 [ L , R ] 内部数字 i 出现的次数 (0<=i&l ...
- 数位dp详解&&LG P2602 [ZJOI2010]数字计数
数位dp,适用于解决一类求x~y之间有多少个符合要求的数或者其他. 例题 题目描述 杭州交通管理局经常会扩充一些的士车牌照,新近出来一个好消息,以后上牌照,不再含有不吉利的数字了,这样一来,就可以消除 ...
- 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP
题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...
- UVA.1640.The Counting Problem / BZOJ.1833.[ZJOI2010]数字计数(数位DP)
题目链接 \(Description\) 求\([l,r]\)中\(0,1,\cdots,9\)每个数字出现的次数(十进制表示). \(Solution\) 对每位分别DP.注意考虑前导0: 在最后统 ...
- 洛谷P2602 [ZJOI2010]数字计数(数位dp)
数字计数 题目传送门 解题思路 用\(dp[i][j][k]\)来表示长度为\(i\)且以\(j\)为开头的数里\(k\)出现的次数. 则转移方程式为:\(dp[i][j][k] += \sum_{t ...
- BZOJ1833或洛谷2602 [ZJOI2010]数字计数
BZOJ原题链接 洛谷原题链接 又是套记搜模板的时候.. 对\(0\sim 9\)单独统计. 定义\(f[pos][sum]\),即枚举到第\(pos\)位,前面枚举的所有位上是当前要统计的数的个数之 ...
随机推荐
- 记一次往集群添加机器,liveNodes缺少机器的情况
1.背景 公司线下环境,原本有三台虚拟机组成的集群(cdh5.3.6),由于硬件配置比较低,申请了新的三台机器,8核8G内存,在上面部署了cdh5.11.1,较新的cdh集群. 由于远来的三台还在使用 ...
- springboot 多模块项目创建
1.File>new>project 直接点击next 2.输入groupId .artifactId 3.选择项目保存路劲 finish 4.成功创建多模块项目的根模块 5.创建子 ...
- 02:H.264学习笔记
H.264组成 1.网络提取层 (Network Abstraction Layer,NAL) 2.视讯编码层 (Video Coding Layer,VCL) a.H.264/AVC影像格式阶层架构 ...
- python excel to mysql
import sys import xlrd import pymysql import math import json from collections import OrderedDict # ...
- js 混合排序(类似中文手机操作系统中的通讯录排序)
在阳光明媚最适合打盹的下午, 特意静音的手机竟然动起来了, 你没看错, 它震动了.... 上帝(顾客)来电, "报表查询系统左侧树状菜单中设备的中文名称不能排序", 要增加排序功能 ...
- 自己制作一个简单的操作系统二[CherryOS]
自己制作一个简单的操作系统二[CherryOS] 我的上一篇博客 自己制作一个简单的操作系统一[环境搭建], 详细介绍了制作所需的前期准备工作 一. 一点说明 这个操作系统只是第一步, 仅仅是开机显示 ...
- Dungeon Master POJ-2251 三维BFS
题目链接:http://poj.org/problem?id=2251 题目大意 你被困在了一个三维的迷宫,找出能通往出口的最短时间.如果走不到出口,输出被困. 思路 由于要找最短路径,其实就是BFS ...
- Redis数据库之数据基本管理操作
了解并掌握各种数据类型的命令操作方式,以及各种数据类型值的操作方式.同时,熟练记忆列表.哈希.集合和有序集合等数据类型的常用操作命令.能根据指令格式完成相应的指令操作. ①string数据类型的练习 ...
- GStreamer基础教程09 - Appsrc及Appsink
摘要 在我们前面的文章中,我们的Pipline都是使用GStreamer自带的插件去产生/消费数据.在实际的情况中,我们的数据源可能没有相应的gstreamer插件,但我们又需要将数据发送到GStre ...
- JS/Jquery 表单方式提交总结
1. submit提交 (1). submit 按钮式提交 缺点:在提交前不可修改提交的form表单数据 // 1. html <form method="post" act ...