洛谷 SP14932 LCA - Lowest Common Ancestor
洛谷 SP14932 LCA - Lowest Common Ancestor
题目描述
A tree is an undirected graph in which any two vertices are connected by exactly one simple path. In other words, any connected graph without cycles is a tree. - Wikipedia
The lowest common ancestor (LCA) is a concept in graph theory and computer science. Let T be a rooted tree with N nodes. The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself). - Wikipedia
Your task in this problem is to find the LCA of any two given nodes v and w in a given tree T.
For example the LCA of nodes 9 and 12 in this tree is the node number 3.
Input
The first line of input will be the number of test cases. Each test case will start with a number N the number of nodes in the tree, 1 <= N <= 1,000. Nodes are numbered from 1 to N. The next N lines each one will start with a number M the number of child nodes of the Nth node, 0 <= M <= 999 followed by M numbers the child nodes of the Nth node. The next line will be a number Q the number of queries you have to answer for the given tree T, 1 <= Q <= 1000. The next Q lines each one will have two number v and w in which you have to find the LCA of v and w in T, 1 <= v, w <= 1,000.
Input will guarantee that there is only one root and no cycles.
Output
For each test case print Q + 1 lines, The first line will have “Case C:” without quotes where C is the case number starting with 1. The next Q lines should be the LCA of the given v and w respectively.
Example
Input:
1
7
3 2 3 4
0
3 5 6 7
0
0
0
0
2
5 7
2 7
Output:
Case 1:
3
1
输入格式
无
输出格式
无
题意翻译
Description:
一棵树是一个简单无向图,图中任意两个节点仅被一条边连接,所有连通无环无向图都是一棵树。-Wikipedia
最近公共祖先(LCA)是……(此处省去对LCA的描述),你的任务是对一棵给定的树TT以及上面的两个节点u,vu,v求出他们的LCALCA。
例如图中99和1212号节点的LCA*L*C*A*为33号节点
Input:
输入的第一行为数据组数TT,对于每组数据,第一行为一个整数N(1\leq N\leq1000)N(1≤N≤1000),节点编号从11到NN,接下来的NN行里每一行开头有一个数字M(0\leq M\leq999)M(0≤M≤999),MM为第ii个节点的子节点数量,接下来有MM个数表示第ii个节点的子节点编号。下面一行会有一个整数Q(1\leq Q\leq1000)Q(1≤Q≤1000),接下来的QQ行每行有两个数u,vu,v,输出节点u,vu,v在给定树中的LCALCA。
输入数据保证只有一个根节点并且没有环。
Output:
对于每一组数据输出Q+1Q+1行,第一行格式为"Case i:"(没有双引号),i表示当前数据是第几组,接下来的QQ行每一行一个整数表示一对节点u,vu,v的LCALCA。
Sample Input:
1
7
3 2 3 4
0
3 5 6 7
0
0
0
0
2
5 7
2 7
Sample Output:
Case 1:
3
1
Translated by @yxl_gl
输入输出样例
无
题解:
LCA模板题目双倍经验~~
点进来的小伙伴肯定还不太会LCA...
请参考蒟蒻的这篇博客:
(这里介绍了倍增求LCA,其实求LCA还有好多方式,比如离线Tarjan和树链剖分等,有兴趣的巨佬可以自己涉及,如果只求LCA的话,还是这种倍增法更快一些)
当然,本题还有一些小细节,比如多组数据数据要清空,以及比较奇葩的读入边的方式。
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=1010;
char *p1,*p2,buf[100000];
#define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++)
int read()
{
int x=0,f=1;
char ch=nc();
while(ch<48){if(ch=='-')f=-1;ch=nc();}
while(ch>47) x=(((x<<2)+x)<<1)+ch-48,ch=nc();
return x*f;
}
int n,m,q;
int tot,head[maxn],nxt[maxn<<1],to[maxn<<1];
int deep[maxn],fa[maxn][21];
void add(int x,int y)
{
to[++tot]=y;
nxt[tot]=head[x];
head[x]=tot;
}
void dfs(int x,int f)
{
deep[x]=deep[f]+1;
fa[x][0]=f;
for(int i=1;(1<<i)<=deep[x];i++)
fa[x][i]=fa[fa[x][i-1]][i-1];
for(int i=head[x];i;i=nxt[i])
{
int y=to[i];
if(y==f)
continue;
dfs(y,x);
}
}
int lca(int x,int y)
{
int ret;
if(deep[x]<deep[y])
swap(x,y);
for(int i=20;i>=0;i--)
if(deep[fa[x][i]]>=deep[y])
x=fa[x][i];
if(x==y)
return y;
for(int i=20;i>=0;i--)
{
if(fa[x][i]!=fa[y][i])
{
x=fa[x][i];
y=fa[y][i];
}
else
ret=fa[x][i];
}
return ret;
}
int main()
{
int t;
t=read();
for(int k=1;k<=t;k++)
{
tot=0;
memset(head,0,sizeof(head));
memset(nxt,0,sizeof(nxt));
memset(to,0,sizeof(to));
memset(deep,0,sizeof(deep));
memset(fa,0,sizeof(fa));
n=read();
for(int i=1;i<=n;i++)
{
m=read();
if(!m)
continue;
for(int j=1;j<=m;j++)
{
int u=read();
add(u,i);
add(i,u);
}
}
dfs(1,0);
q=read();
printf("Case %d:\n",k);
while(q--)
{
int u=read();
int v=read();
printf("%d\n",lca(u,v));
}
}
return 0;
}
洛谷 SP14932 LCA - Lowest Common Ancestor的更多相关文章
- SP14932 LCA - Lowest Common Ancestor
Description: 一棵树是一个简单无向图,图中任意两个节点仅被一条边连接,所有连通无环无向图都是一棵树.\(-Wikipedia\) 最近公共祖先(\(LCA\))是--(此处省去对\(LCA ...
- SP14932 【LCA - Lowest Common Ancestor】
专业跟队形 唯一一个有$\LaTeX$的 裸的$LCA$,我用的是$Tarjan~LCA$,注意两点相同特判 #include<iostream> #include<cstdio&g ...
- 寻找二叉树中的最低公共祖先结点----LCA(Lowest Common Ancestor )问题(递归)
转自 剑指Offer之 - 树中两个结点的最低公共祖先 题目: 求树中两个节点的最低公共祖先. 思路一: ——如果是二叉树,而且是二叉搜索树,那么是可以找到公共节点的. 二叉搜索树都是排序过的,位于左 ...
- LeetCode 235. Lowest Common Ancestor of a Binary Search Tree (二叉搜索树最近的共同祖先)
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...
- PAT A1143 Lowest Common Ancestor (30 分)——二叉搜索树,lca
The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U ...
- 235. Lowest Common Ancestor of a Binary Search Tree(LCA最低公共祖先)
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the ...
- Lowest Common Ancestor (LCA)
题目链接 In a rooted tree, the lowest common ancestor (or LCA for short) of two vertices u and v is defi ...
- PAT Advanced 1143 Lowest Common Ancestor (30) [二叉查找树 LCA]
题目 The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both ...
- [LeetCode] Lowest Common Ancestor of a Binary Tree 二叉树的最小共同父节点
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree. According ...
随机推荐
- 当Python遇上AI(一)
Infi-chu: http://www.cnblogs.com/Infi-chu/ 一.什么是学习 如果要给学习下一个定义,那么根据某百科给出的定义是——学习,是指通过阅读.听讲.思考和实践等途径获 ...
- JT/T 808-2013 道路运输车辆卫星定位系统北斗兼容车载终端通讯协议技术规范
文档下载地址:JT/T 808-2013 道路运输车辆卫星定位系统北斗兼容车载终端通讯协议技术规范
- 从0使用Ruby on Rails打造企业级RESTful API项目实战之我的云音乐
本节对我们项目实现的功能和知识点做一个简单的介绍,因为是RESTful API项目,所以对于后端来说基本上没有什么UI界面可展示,那我们就在关键的点,使用客户端(Android)实现的效果图. 课程简 ...
- 白话 MVC、MVP、MVVP
白话 MVC.MVP.MVVP 注意这里单纯的通过例子来讲解 MVC MVP MVVP 这三种架构模式的起源和作用,不牵扯某种特定的语言.具体到各种语言各种软件系统上体现有所不同,但是原理都是这样的. ...
- 用iText5-1-生成PDF
参考代码和图片出处 https://howtodoinjava.com/library/read-generate-pdf-java-itext/ pom引入jar包 <dependencies ...
- springioc之依赖注入
1.1.2 IoC能做什么 IoC不是一种技术,只是一种思想,一个重要的面向对象编程的法则,它能指导我们如何设计出松耦合.更优良的程序.传统应用程序都是由我们在类内部主动创建依赖对象,从而导致类与类 ...
- jxl.jar下载
jxl.jar是通过java操作excel表格的工具类库,是由java语言开发而成的. 在网上找了很多,不是链接失效,就是csdn上要钱的,所以干脆上传个到自己的博客文件里,方便你们下载. 下载地址: ...
- 关于eclipse创建的[传统web项目][传统maven项目][maven-web项目][springboot项目]目录结构
总体比较 [传统web项目] [传统maven项目] [maven-web项目] [springboot项目] 本文摘至https://blog.csdn.net/qq_42747738/articl ...
- Vue父子组件数据双向绑定,子组件可修改props
第一种,子组件通过监听父组件数据,子组件改变数据之后通知给父组件 原文链接:https://blog.csdn.net/m0_37728716/article/details/81776929 父组件 ...
- Springboot整合Mybatis实现级联一对多CRUD操作
在关系型数据库中,随处可见表之间的连接,对级联的表进行增删改查也是程序员必备的基础技能.关于Spring Boot整合Mybatis在之前已经详细写过,不熟悉的可以回顾Spring Boot整合Myb ...