洛谷 SP14932 LCA - Lowest Common Ancestor

洛谷评测传送门

题目描述

A tree is an undirected graph in which any two vertices are connected by exactly one simple path. In other words, any connected graph without cycles is a tree. - Wikipedia

The lowest common ancestor (LCA) is a concept in graph theory and computer science. Let T be a rooted tree with N nodes. The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself). - Wikipedia

Your task in this problem is to find the LCA of any two given nodes v and w in a given tree T.

For example the LCA of nodes 9 and 12 in this tree is the node number 3.

Input

The first line of input will be the number of test cases. Each test case will start with a number N the number of nodes in the tree, 1 <= N <= 1,000. Nodes are numbered from 1 to N. The next N lines each one will start with a number M the number of child nodes of the Nth node, 0 <= M <= 999 followed by M numbers the child nodes of the Nth node. The next line will be a number Q the number of queries you have to answer for the given tree T, 1 <= Q <= 1000. The next Q lines each one will have two number v and w in which you have to find the LCA of v and w in T, 1 <= v, w <= 1,000.

Input will guarantee that there is only one root and no cycles.

Output

For each test case print Q + 1 lines, The first line will have “Case C:” without quotes where C is the case number starting with 1. The next Q lines should be the LCA of the given v and w respectively.

Example

Input:
1
7
3 2 3 4
0
3 5 6 7
0
0
0
0
2
5 7
2 7 Output:
Case 1:
3
1

输入格式

输出格式

题意翻译

Description:

一棵树是一个简单无向图,图中任意两个节点仅被一条边连接,所有连通无环无向图都是一棵树。-Wikipedia

最近公共祖先(LCA)是……(此处省去对LCA的描述),你的任务是对一棵给定的树TT以及上面的两个节点u,vu,v求出他们的LCALCA

例如图中99和1212号节点的LCA*L*C*A*为33号节点

Input:

输入的第一行为数据组数TT,对于每组数据,第一行为一个整数N(1\leq N\leq1000)N(1≤N≤1000),节点编号从11到NN,接下来的NN行里每一行开头有一个数字M(0\leq M\leq999)M(0≤M≤999),MM为第ii个节点的子节点数量,接下来有MM个数表示第ii个节点的子节点编号。下面一行会有一个整数Q(1\leq Q\leq1000)Q(1≤Q≤1000),接下来的QQ行每行有两个数u,vu,v,输出节点u,vu,v在给定树中的LCALCA

输入数据保证只有一个根节点并且没有环。

Output:

对于每一组数据输出Q+1Q+1行,第一行格式为"Case i:"(没有双引号),i表示当前数据是第几组,接下来的QQ行每一行一个整数表示一对节点u,vu,v的LCALCA

Sample Input:

1
7
3 2 3 4
0
3 5 6 7
0
0
0
0
2
5 7
2 7

Sample Output:

Case 1:
3
1

Translated by @yxl_gl

输入输出样例

题解:

LCA模板题目双倍经验~~

点进来的小伙伴肯定还不太会LCA...

请参考蒟蒻的这篇博客:

(这里介绍了倍增求LCA,其实求LCA还有好多方式,比如离线Tarjan和树链剖分等,有兴趣的巨佬可以自己涉及,如果只求LCA的话,还是这种倍增法更快一些)

求解LCA问题的几种方式

当然,本题还有一些小细节,比如多组数据数据要清空,以及比较奇葩的读入边的方式。

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=1010;
char *p1,*p2,buf[100000];
#define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++)
int read()
{
int x=0,f=1;
char ch=nc();
while(ch<48){if(ch=='-')f=-1;ch=nc();}
while(ch>47) x=(((x<<2)+x)<<1)+ch-48,ch=nc();
return x*f;
}
int n,m,q;
int tot,head[maxn],nxt[maxn<<1],to[maxn<<1];
int deep[maxn],fa[maxn][21];
void add(int x,int y)
{
to[++tot]=y;
nxt[tot]=head[x];
head[x]=tot;
}
void dfs(int x,int f)
{
deep[x]=deep[f]+1;
fa[x][0]=f;
for(int i=1;(1<<i)<=deep[x];i++)
fa[x][i]=fa[fa[x][i-1]][i-1];
for(int i=head[x];i;i=nxt[i])
{
int y=to[i];
if(y==f)
continue;
dfs(y,x);
}
}
int lca(int x,int y)
{
int ret;
if(deep[x]<deep[y])
swap(x,y);
for(int i=20;i>=0;i--)
if(deep[fa[x][i]]>=deep[y])
x=fa[x][i];
if(x==y)
return y;
for(int i=20;i>=0;i--)
{
if(fa[x][i]!=fa[y][i])
{
x=fa[x][i];
y=fa[y][i];
}
else
ret=fa[x][i];
}
return ret;
}
int main()
{
int t;
t=read();
for(int k=1;k<=t;k++)
{
tot=0;
memset(head,0,sizeof(head));
memset(nxt,0,sizeof(nxt));
memset(to,0,sizeof(to));
memset(deep,0,sizeof(deep));
memset(fa,0,sizeof(fa));
n=read();
for(int i=1;i<=n;i++)
{
m=read();
if(!m)
continue;
for(int j=1;j<=m;j++)
{
int u=read();
add(u,i);
add(i,u);
}
}
dfs(1,0);
q=read();
printf("Case %d:\n",k);
while(q--)
{
int u=read();
int v=read();
printf("%d\n",lca(u,v));
}
}
return 0;
}

洛谷 SP14932 LCA - Lowest Common Ancestor的更多相关文章

  1. SP14932 LCA - Lowest Common Ancestor

    Description: 一棵树是一个简单无向图,图中任意两个节点仅被一条边连接,所有连通无环无向图都是一棵树.\(-Wikipedia\) 最近公共祖先(\(LCA\))是--(此处省去对\(LCA ...

  2. SP14932 【LCA - Lowest Common Ancestor】

    专业跟队形 唯一一个有$\LaTeX$的 裸的$LCA$,我用的是$Tarjan~LCA$,注意两点相同特判 #include<iostream> #include<cstdio&g ...

  3. 寻找二叉树中的最低公共祖先结点----LCA(Lowest Common Ancestor )问题(递归)

    转自 剑指Offer之 - 树中两个结点的最低公共祖先 题目: 求树中两个节点的最低公共祖先. 思路一: ——如果是二叉树,而且是二叉搜索树,那么是可以找到公共节点的. 二叉搜索树都是排序过的,位于左 ...

  4. LeetCode 235. Lowest Common Ancestor of a Binary Search Tree (二叉搜索树最近的共同祖先)

    Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...

  5. PAT A1143 Lowest Common Ancestor (30 分)——二叉搜索树,lca

    The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U ...

  6. 235. Lowest Common Ancestor of a Binary Search Tree(LCA最低公共祖先)

      Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the ...

  7. Lowest Common Ancestor (LCA)

    题目链接 In a rooted tree, the lowest common ancestor (or LCA for short) of two vertices u and v is defi ...

  8. PAT Advanced 1143 Lowest Common Ancestor (30) [二叉查找树 LCA]

    题目 The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both ...

  9. [LeetCode] Lowest Common Ancestor of a Binary Tree 二叉树的最小共同父节点

    Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree. According ...

随机推荐

  1. 使用VeeValidate的data-vv-scope指定验证范围

    <div class="login" v-show="activeTab === 1"> <div class="panel-con ...

  2. 为什么学习Python?

    互联网高速发展的今天,很荣幸能够接触计算机这个专业,成为一名程序猿小白,本科期间学习了C.C++.Java.Pthon.C#,每门语言都了解那么一点,学的很杂,刚好遇到大学毕业的这个暑期,在继续读研之 ...

  3. Prism_Event Aggregator(4)

    Event Aggregator Prism库提供了一种事件机制,可以在应用程序中松散耦合的组件之间进行通信.该机制基于事件聚合器服务,允许发布者和订阅者通过事件进行通信,但仍然没有彼此直接引用. 在 ...

  4. HTML连载55-网易注册界面实战之input填充

    一.又学一招:想要让两个盒子高度对齐,那么让他们浮动起来 <!DOCTYPE html> <html lang="en"> <head> < ...

  5. 阿里云RDS for SQL Serrver关于权限的一个严重Bug

    阿里云RDS for SQL Server的账号管理有不少小Bug,而且有一个很严重的Bug:任何普通账号,都能创建数据库.注意,我这里是说任意普通账号,任意任意普通账号!任意任意普通账号!重要的事情 ...

  6. windows重装系统后grub引导菜单修复方法(亲自实验过)

    问题: 电脑安装的是windows7+ubuntu 15.10双系统.windows重装后,grub引导界面消失. 解决方法有两大步: 1.进入ubuntu; 2.在ubuntu中修复grub. 一. ...

  7. C# 执行 cmd 命令, 不显示任何窗口

    代码如下: 调用的命令:reg export exportPath registryKey -y Process proc = new Process(); proc.StartInfo.FileNa ...

  8. @ImportResource

    1. @ImportResource(locations = {"classpath:beantest.xml"})标注到启动类上,从类路径下加载xml文件,通过Applicati ...

  9. docker-19.03安装部署,阿里源加速

    docker所依赖的包环境,为了方便不报错,推荐执行 [root@liujunjun ~]# yum install -y yum-utils device-mapper-persistent-dat ...

  10. JS Proxy(代理)

    前言 Proxy 也就是代理,可以帮助我们完成很多事情,例如对数据的处理,对构造函数的处理,对数据的验证,说白了,就是在我们访问对象前添加了一层拦截,可以过滤很多操作,而这些过滤,由你来定义. 想了解 ...