洛谷 SP14932 LCA - Lowest Common Ancestor
洛谷 SP14932 LCA - Lowest Common Ancestor
题目描述
A tree is an undirected graph in which any two vertices are connected by exactly one simple path. In other words, any connected graph without cycles is a tree. - Wikipedia
The lowest common ancestor (LCA) is a concept in graph theory and computer science. Let T be a rooted tree with N nodes. The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself). - Wikipedia
Your task in this problem is to find the LCA of any two given nodes v and w in a given tree T.
For example the LCA of nodes 9 and 12 in this tree is the node number 3.
Input
The first line of input will be the number of test cases. Each test case will start with a number N the number of nodes in the tree, 1 <= N <= 1,000. Nodes are numbered from 1 to N. The next N lines each one will start with a number M the number of child nodes of the Nth node, 0 <= M <= 999 followed by M numbers the child nodes of the Nth node. The next line will be a number Q the number of queries you have to answer for the given tree T, 1 <= Q <= 1000. The next Q lines each one will have two number v and w in which you have to find the LCA of v and w in T, 1 <= v, w <= 1,000.
Input will guarantee that there is only one root and no cycles.
Output
For each test case print Q + 1 lines, The first line will have “Case C:” without quotes where C is the case number starting with 1. The next Q lines should be the LCA of the given v and w respectively.
Example
Input:
1
7
3 2 3 4
0
3 5 6 7
0
0
0
0
2
5 7
2 7
Output:
Case 1:
3
1
输入格式
无
输出格式
无
题意翻译
Description:
一棵树是一个简单无向图,图中任意两个节点仅被一条边连接,所有连通无环无向图都是一棵树。-Wikipedia
最近公共祖先(LCA)是……(此处省去对LCA的描述),你的任务是对一棵给定的树TT以及上面的两个节点u,vu,v求出他们的LCALCA。
例如图中99和1212号节点的LCA*L*C*A*为33号节点
Input:
输入的第一行为数据组数TT,对于每组数据,第一行为一个整数N(1\leq N\leq1000)N(1≤N≤1000),节点编号从11到NN,接下来的NN行里每一行开头有一个数字M(0\leq M\leq999)M(0≤M≤999),MM为第ii个节点的子节点数量,接下来有MM个数表示第ii个节点的子节点编号。下面一行会有一个整数Q(1\leq Q\leq1000)Q(1≤Q≤1000),接下来的QQ行每行有两个数u,vu,v,输出节点u,vu,v在给定树中的LCALCA。
输入数据保证只有一个根节点并且没有环。
Output:
对于每一组数据输出Q+1Q+1行,第一行格式为"Case i:"(没有双引号),i表示当前数据是第几组,接下来的QQ行每一行一个整数表示一对节点u,vu,v的LCALCA。
Sample Input:
1
7
3 2 3 4
0
3 5 6 7
0
0
0
0
2
5 7
2 7
Sample Output:
Case 1:
3
1
Translated by @yxl_gl
输入输出样例
无
题解:
LCA模板题目双倍经验~~
点进来的小伙伴肯定还不太会LCA...
请参考蒟蒻的这篇博客:
(这里介绍了倍增求LCA,其实求LCA还有好多方式,比如离线Tarjan和树链剖分等,有兴趣的巨佬可以自己涉及,如果只求LCA的话,还是这种倍增法更快一些)
当然,本题还有一些小细节,比如多组数据数据要清空,以及比较奇葩的读入边的方式。
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=1010;
char *p1,*p2,buf[100000];
#define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++)
int read()
{
int x=0,f=1;
char ch=nc();
while(ch<48){if(ch=='-')f=-1;ch=nc();}
while(ch>47) x=(((x<<2)+x)<<1)+ch-48,ch=nc();
return x*f;
}
int n,m,q;
int tot,head[maxn],nxt[maxn<<1],to[maxn<<1];
int deep[maxn],fa[maxn][21];
void add(int x,int y)
{
to[++tot]=y;
nxt[tot]=head[x];
head[x]=tot;
}
void dfs(int x,int f)
{
deep[x]=deep[f]+1;
fa[x][0]=f;
for(int i=1;(1<<i)<=deep[x];i++)
fa[x][i]=fa[fa[x][i-1]][i-1];
for(int i=head[x];i;i=nxt[i])
{
int y=to[i];
if(y==f)
continue;
dfs(y,x);
}
}
int lca(int x,int y)
{
int ret;
if(deep[x]<deep[y])
swap(x,y);
for(int i=20;i>=0;i--)
if(deep[fa[x][i]]>=deep[y])
x=fa[x][i];
if(x==y)
return y;
for(int i=20;i>=0;i--)
{
if(fa[x][i]!=fa[y][i])
{
x=fa[x][i];
y=fa[y][i];
}
else
ret=fa[x][i];
}
return ret;
}
int main()
{
int t;
t=read();
for(int k=1;k<=t;k++)
{
tot=0;
memset(head,0,sizeof(head));
memset(nxt,0,sizeof(nxt));
memset(to,0,sizeof(to));
memset(deep,0,sizeof(deep));
memset(fa,0,sizeof(fa));
n=read();
for(int i=1;i<=n;i++)
{
m=read();
if(!m)
continue;
for(int j=1;j<=m;j++)
{
int u=read();
add(u,i);
add(i,u);
}
}
dfs(1,0);
q=read();
printf("Case %d:\n",k);
while(q--)
{
int u=read();
int v=read();
printf("%d\n",lca(u,v));
}
}
return 0;
}
洛谷 SP14932 LCA - Lowest Common Ancestor的更多相关文章
- SP14932 LCA - Lowest Common Ancestor
Description: 一棵树是一个简单无向图,图中任意两个节点仅被一条边连接,所有连通无环无向图都是一棵树.\(-Wikipedia\) 最近公共祖先(\(LCA\))是--(此处省去对\(LCA ...
- SP14932 【LCA - Lowest Common Ancestor】
专业跟队形 唯一一个有$\LaTeX$的 裸的$LCA$,我用的是$Tarjan~LCA$,注意两点相同特判 #include<iostream> #include<cstdio&g ...
- 寻找二叉树中的最低公共祖先结点----LCA(Lowest Common Ancestor )问题(递归)
转自 剑指Offer之 - 树中两个结点的最低公共祖先 题目: 求树中两个节点的最低公共祖先. 思路一: ——如果是二叉树,而且是二叉搜索树,那么是可以找到公共节点的. 二叉搜索树都是排序过的,位于左 ...
- LeetCode 235. Lowest Common Ancestor of a Binary Search Tree (二叉搜索树最近的共同祖先)
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...
- PAT A1143 Lowest Common Ancestor (30 分)——二叉搜索树,lca
The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U ...
- 235. Lowest Common Ancestor of a Binary Search Tree(LCA最低公共祖先)
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the ...
- Lowest Common Ancestor (LCA)
题目链接 In a rooted tree, the lowest common ancestor (or LCA for short) of two vertices u and v is defi ...
- PAT Advanced 1143 Lowest Common Ancestor (30) [二叉查找树 LCA]
题目 The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both ...
- [LeetCode] Lowest Common Ancestor of a Binary Tree 二叉树的最小共同父节点
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree. According ...
随机推荐
- Python项目搬迁,快捷导出环境依赖包到requirements.txt
项目搬迁的时候,需要把当前的环境依赖包导出,然后到部署项目的服务器上安装依赖. 我们可以通过下面的命令执行,把依赖包导出到requirements.txt文件里. 生成requirements.txt ...
- 微服务-Springboot+Redis缓存管理接口代码实现
废话少说,上代码,结合代码讲解: 一.创建maven工程:导入依赖: <packaging>war</packaging><!--修改jdk的版本--><pr ...
- IDEA新建servlet时出现的错误
未注入Tomcat里lib文件下的jar 这样即可
- oracle 查询两个字段值相同的记录
select A.* from tb_mend_enrol A, (select A.Typeid, A.address from tb_mend_enrol A group by A.Typeid, ...
- Shell—脚本编程进阶
shell脚本进阶之条件语句 条件选择if语句 https://www.runoob.com/?s=shell&page=1 https://www.cnblogs.com/flylinux/ ...
- java之递归
什么是递归 递归:指在当前方法内调用自己的这种现象. 递归的分类: 递归分为两种,直接递归和间接递归. 直接递归称为方法自身调用自己. 间接递归可以A方法调用B方法,B方法调用C方法,C方法调用A方法 ...
- gmail 批量删除邮件
前几天我在 github上 star 了一下 angular 项目,然后8,9 天的时间收到了很多邮件,起初我没注意看具体数量,直接全选-删除.结果删了 3,4 页了还有很多.再仔细一看,一万多封邮件 ...
- 【docker构建】基于docker构建rabbitmq消息队列管理服务
1. 拉取镜像 # 可以在官网查看版本 [root@VM_0_10_centos wordpress]# docker pull rabbitmq:3.7.7-management 2. 根据拉取的镜 ...
- apt-get原理
apt-get 而这个步骤全要用户亲力亲为可能又有些麻烦,懒是科技发展的重要推动力.所以软件厂商自己编译好了很多二进制文件,只要系统和环境对应,下载之后就能直接安装. 但是如果下载了很多软件我想要管理 ...
- [Spring cloud 一步步实现广告系统] 4. 通用代码模块设计
一个大的系统,在代码的复用肯定是必不可少的,它能解决: 统一的响应处理(可以对外提供统一的响应对象包装) 统一的异常处理(可以将业务异常统一收集处理) 通用代码定义.配置定义(通用的配置信息放在统一的 ...