P3515 [POI2011]Lightning Conductor
首先进行一步转化
\(a_j \leq a_i + q - sqrt(abs(i - j))\)
\(a_i + q \geq a_j + sqrt(abs(i-j))\)
即 $q = max (a_j + sqrt(abs(i-j))) - a_i $
我们对\(i \geq j 和 j > i\) 分类讨论, 其实解决一种情况后将序列翻转再做一遍即可
有一种O(\(n^2\))的dp暴力应该不难想到
那么我们现在思考如何以比较优秀的时间复杂度解决
这里涉及到决策单调性
简单的说, 对于i来说, 它的答案来源是另一点j,
那么所有答案来源排成的序列\(j_1,j_2,j_3,\cdots j_n\) 具有单调性
比如: 1112255566666666678888
那么我们可以考虑对于每一个i, 它可以成为哪一段区间的答案
即一个三元组(l, r, i) 对应i控制l到r
可以二分+栈(或队列)处理
二分i和栈顶答案相等临界, 若临界小于l则弹栈重复操作
否则将新的(l, r, i) 压倒栈中
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath>
#define ll long long
using namespace std;
const int N = 500080;
struct node{
ll l, r, x;
};
deque<node> q;
ll read() {
ll x = 0, f = 1;
char c = getchar();
while (!isdigit(c)) {
if (c == '-') f = -1;
c = getchar();
}
while (isdigit(c)) {
x = (x << 3) + (x << 1) + c - '0';
c = getchar();
}
return x * f;
} //快读
ll n;
long double ans[N], a[N];
bool check(ll x,ll y,ll k) {
return a[x] + sqrt(k - x) > a[y] + sqrt(k - y);
}
void work(void) {
node k = (node){1, n, 1};
for (ll i = 2;i <= n; i++) {
if (a[i] < a[k.x]) continue; //剪枝, 如果满足则它一定不会有贡献
ll l = i, r = n, mid;
while (l <= r) {
mid = (l + r) >> 1;
if (check(k.x, i, mid)) l = mid + 1;
else r = mid - 1;
}//二分
if (l == n + 1) continue;
if (l <= k.l) {
k = q.front();
q.pop_front();
i--;
continue;
}//弹栈
k.r = r;
q.push_front(k);
k = (node){l, n, i}; //压栈
}
q.push_front(k);
k = q.back();
q.pop_back();
for (ll i = 1;i <= n; i++) {
if (k.r < i) {
k = q.back();
q.pop_back();
}
ans[i] = max(ans[i], a[k.x] + sqrt(i - k.x)); //要做两次,所以取max
}
}
int main() {
n = read();
for (int i = 1;i <= n; i++)
a[i] = read(), ans[i] = a[i];
work();
for (int j = 1;j << 1 <= n; j++)
swap(a[j], a[n-j+1]), swap(ans[j], ans[n-j+1]);
//翻转
while (q.size()) q.pop_front();
work();
///*
for (int i = n;i >= 1; i--)
printf ("%d\n", int(ceil(ans[i]) - a[i]));
//*/
return 0;
}
P3515 [POI2011]Lightning Conductor的更多相关文章
- P3515 [POI2011]Lightning Conductor(决策单调性分治)
P3515 [POI2011]Lightning Conductor 式子可转化为:$p>=a_j-a_i+sqrt(i-j) (j<i)$ $j>i$的情况,把上式翻转即可得到 下 ...
- 洛谷P3515 [POI2011]Lightning Conductor(动态规划,决策单调性,单调队列)
洛谷题目传送门 疯狂%%%几个月前就秒了此题的Tyher巨佬 借着这题总结一下决策单调性优化DP吧.蒟蒻觉得用数形结合的思想能够轻松地理解它. 首先,题目要我们求所有的\(p_i\),那么把式子变一下 ...
- 洛谷P3515 [POI2011]Lightning Conductor(决策单调性)
题意 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j)) ...
- P3515 [POI2011]Lightning Conductor[决策单调性优化]
给定一序列,求对于每一个$a_i$的最小非负整数$p_i$,使得$\forall j \neq i $有$ p_i>=a_j-a_i+ \sqrt{|i-j|}$. 绝对值很烦 ,先分左右情况单 ...
- [bzoj 2216] [Poi2011] Lightning Conductor
[bzoj 2216] [Poi2011] Lightning Conductor Description 已知一个长度为n的序列a1,a2,-,an. 对于每个1<=i<=n,找到最小的 ...
- 【BZOJ2216】[Poi2011]Lightning Conductor 决策单调性
[BZOJ2216][Poi2011]Lightning Conductor Description 已知一个长度为n的序列a1,a2,...,an.对于每个1<=i<=n,找到最小的非负 ...
- 【BZOJ】2216: [Poi2011]Lightning Conductor
题意 给一个长度为\(n\)的序列\(a_i\),对于每个\(1 \le i \le n\),找到最小的非负整数\(p\)满足 对于任意的\(j\), \(a_j \le a_i + p - \sqr ...
- BZOJ2216 : [Poi2011]Lightning Conductor
$f[i]=\max(a[j]+\lceil\sqrt{|i-j|}\rceil)$, 拆开绝对值,考虑j<i,则决策具有单调性,j>i同理, 所以可以用分治$O(n\log n)$解决. ...
- bzoj 2216 [Poi2011]Lightning Conductor——单调队列+二分处理决策单调性
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2216 那个关于位置的代价是带根号的,所以随着距离的增加而增长变慢:所以靠后的位置一旦比靠前的 ...
随机推荐
- Delphi - Indy TIdFTPServer封装类
在Delphi 7开发下有强大的Indy控件,版本为9,要实现一个FTP服务器,参考自带的例子,发现还要写很多函数,而且不支持中文显示文件列表等等. 于是,自己改进封装了下,形成一个TFTPServe ...
- nginx有哪些作用
Nginx应该是现在最火的web和反向代理服务器,没有之一.她是一款诞生于俄罗斯的高性能web服务器,尤其在高并发情况下,相较Apache,有优异的表现. 那除了负载均衡,她还有什么其他的用途呢,下面 ...
- 基于Python的Appium环境搭建合集
自动化一直是测试圈中的热聊,也是大家追求的技术方向.在测试中,往往回归测试也是测试人员的“痛点”.对于迭代慢.变更少的功能,就能用上自动化来替代人工回归,减轻工作量. 问题 在分享环境搭建之前,先抛出 ...
- [python]python列表、元组
1. 列表和元组简介 列表:用中括号[]包裹,元素的个数及元素的值可以改变. 元组:用小括号()包裹,不可用更改. 通过切片运算[]和[:]可以得到子集. 2.列表 示例: List = [1, 2, ...
- ccpc网赛 hdu6705 path(队列模拟 贪心
http://acm.hdu.edu.cn/showproblem.php?pid=6705 这是比赛前8题过的人数第二少的题,于是就来补了,但感觉并不难啊..(怕不是签到难度 题意:给个图,给几条路 ...
- CF - 1108 F MST Unification
题目传送门 题意:在一幅图中, 问需要使得多少条边加一,使得最小生成树只有一种方案. 题解:Kruskal, sort完之后,对于相通的一个边权w,我们可以分析出来有多少边是可以被放到图里面的,然后我 ...
- js 数组方法的作用,各方法是否改变原有的数组
不会改变原来数组的有: concat()---连接两个或更多的数组,并返回结果. every()---检测数组元素的每个元素是否都符合条件. some()---检测数组元素中是否有元素符合指定条件. ...
- Storm VS Flink ——性能对比
1.背景 Apache Flink 和 Apache Storm 是当前业界广泛使用的两个分布式实时计算框架.其中 Apache Storm(以下简称"Storm")在美团点评实时 ...
- maven打包插件maven-assembly-plugin
1.POM文件添加jar包生成插件 <plugin> <groupId>org.apache.maven.plugins</groupId> <artifac ...
- Vert.x Core 文档手册
Vert.x Core 文档手册 中英对照表 Client:客户端 Server:服务器 Primitive:基本(描述类型) Writing:编写(有些地方译为开发) Fluent:流式的 Reac ...