传送门

题意:

给出\(n\)个元素,每个元素有价值\(w_i\)。现在要对这\(n\)个元素进行划分,共划分为\(k\)组。每一组的价值为\(|S|\sum_{i=0}^{|S|}w_i\)。

最后询问所有划分的总价值。

思路:

直接枚举划分不好计算,考虑单独计算每一个元素的贡献,那么就有式子:

\[\sum_{i=1}^nw_i\sum_{j=1}^{n-k+1}{n-1\choose j-1}\begin{Bmatrix}
n - j \\ k - 1
\end{Bmatrix}j
\]

观察这个式子,前面的求和式直接单独计算,后面枚举的上界则可以修改为\(n\)。那么就有:

\[\begin{aligned}
&\sum_{i=0}^n{n-1\choose i-1}\begin{Bmatrix}
n - i \\ k - 1
\end{Bmatrix}i
\end{aligned}
\]

接下来,就是表演的时刻了。

\[\begin{aligned}
&\sum_{i=0}^n{n-1\choose i-1}\begin{Bmatrix}
n - i \\ k - 1
\end{Bmatrix}(i-1+1)\\
=&\sum_{i=0}^n \frac{(n-1)!}{(i-1)!(n-i)!}\begin{Bmatrix}
n - i \\ k - 1
\end{Bmatrix}(i-1)+\sum_{i=0}^n{n-1\choose i-1}\begin{Bmatrix}
n - i \\ k - 1
\end{Bmatrix}\\
=&(n-1)\sum_{i=0}^n {n-2\choose i-2}\begin{Bmatrix}
n - i \\ k - 1
\end{Bmatrix}+\sum_{i=0}^n{n-1\choose i-1}\begin{Bmatrix}
n - i \\ k - 1
\end{Bmatrix}\\
=&(n-1)\sum_{i=0}^n {n-2\choose n-i}\begin{Bmatrix}
n - i \\ k - 1
\end{Bmatrix}+\sum_{i=0}^n{n-1\choose n-i}\begin{Bmatrix}
n - i \\ k - 1
\end{Bmatrix}
\end{aligned}
\]

然后我们现在就是要求这样一个式子:

\[\sum_{i=0}^n{n\choose i}\begin{Bmatrix}
i \\ k - 1
\end{Bmatrix}
\]

我们考虑将第二类斯特林数拆开:

\[\begin{aligned}
&\sum_{i=0}^n{n\choose i}\begin{Bmatrix}
i \\ k - 1
\end{Bmatrix}\\
=&\sum_{i=0}^n{n\choose i}\frac{1}{(k-1)!}\sum_{j=0}^{k-1}(-1)^j{k-1\choose j}(k-1-j)^i\\
=&\sum_{j=0}^n\frac{1}{(k-1)!}(-1)^j{k-1\choose j}\sum_{i=0}^n{n\choose i}(k-1-j)^i\\
=&\sum_{j=0}^n\frac{1}{(k-1)!}(-1)^j{k-1\choose j}(k-j)^n
\end{aligned}
\]

然后就没了。

整个推导过程第一个关键点是拆\(i\),可能是因为这个\(i\)比较烦,所以将其拆开与前面式子合并。

第二个关键就是利用好组合意义,后面和式的意义就是将元素装入\(k-1-j\)个盒子的方案数,有些元素可能一个盒子都不加入。那么对于每个元素而言,就有\(k-j\)种选择,所以可以直接把和式化简。

然后随便搞一下就行。

还有一种更加精妙的思路,我们还是单独考虑每一个元素,但是当考虑\(i\)这个元素时,若\(j\)和\(i\)在同一个集合中,\(j\)对\(i\)有\(w_i\)的贡献。

那么对一个元素而言分两种情况考虑,一个是自己对自己的贡献,显然方案数有\(\begin{Bmatrix}
n \\ k
\end{Bmatrix}\);另一个是其它元素对它的贡献,那么考虑将这个元素加入其它元素中(不可能自己单独一个集合),方案数为\((n-1)\begin{Bmatrix}
n-1 \\ k
\end{Bmatrix}\)。

那么最终一个元素的答案就为:

\[\begin{Bmatrix}
n \\ k
\end{Bmatrix}+(n-1)\begin{Bmatrix}
n-1 \\ k
\end{Bmatrix}
\]

这个式子随便搞搞就行了。

代码如下(代码为第一种解法):

/*
* Author: heyuhhh
* Created Time: 2019/12/12 17:06:20
*/
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
#include <cmath>
#include <set>
#include <map>
#include <queue>
#include <iomanip>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
#define Local
#ifdef Local
#define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
void err() { std::cout << '\n'; }
template<typename T, typename...Args>
void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
#define dbg(...)
#endif
void pt() {std::cout << '\n'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 2e5 + 5, MOD = 1e9 + 7; int n, k;
int fac[N], inv[N];
ll qpow(ll a, ll b) {
ll ans = 1;
while(b) {
if(b & 1) ans = ans * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return ans;
}
int C(int n, int m) {
return 1ll * fac[n] * inv[m] % MOD * inv[n - m] % MOD;
}
void init() {
fac[0] = 1;
for(int i = 1; i < N; i++) fac[i] = 1ll * fac[i - 1] * i % MOD;
inv[N - 1] = qpow(fac[N - 1], MOD - 2);
for(int i = N - 2; i >= 0; i--) inv[i] = 1ll * inv[i + 1] * (i + 1) % MOD;
} void run(){
init();
int sum = 0, ans = 0;
for(int i = 1; i <= n; i++) {
int w; cin >> w;
sum = (sum + w) % MOD;
}
if(n == 1) {
cout << sum << '\n';
return;
}
for(int i = 0, d = 1; i < k; i++, d = MOD - d) {
int res = 1ll * d * inv[i] % MOD * inv[k - 1 - i] % MOD * qpow(k - i, n - 2) % MOD * (k - i + n - 1) % MOD;
ans = (ans + res) % MOD;
}
ans = 1ll * ans * sum % MOD;
cout << ans << '\n';
} int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);;
cout << fixed << setprecision(20);
while(cin >> n >> k) run();
return 0;
}

【cf961G】G. Partitions(组合意义+第二类斯特林数)的更多相关文章

  1. 【CF961G】Partitions 第二类斯特林数

    [CF961G]Partitions 题意:给出n个物品,每个物品有一个权值$w_i$,定义一个集合$S$的权值为$W(S)=|S|\sum\limits_{x\in S} w_x$,定义一个划分的权 ...

  2. 【CF961G】Partitions(第二类斯特林数)

    [CF961G]Partitions(第二类斯特林数) 题面 CodeForces 洛谷 题解 考虑每个数的贡献,显然每个数前面贡献的系数都是一样的. 枚举当前数所在的集合大小,所以前面的系数\(p\ ...

  3. CF961G Partitions(第二类斯特林数)

    传送门 对于每一个元素,我们只要能求出它的出现次数\(sum\),那么每个元素的贡献都是一样的,最终的答案为\(sum\times \sum_{i=1}^n w_i\) 那么分别讨论 如果这个元素自己 ...

  4. Gym - 101147G G - The Galactic Olympics —— 组合数学 - 第二类斯特林数

    题目链接:http://codeforces.com/gym/101147/problem/G G. The Galactic Olympics time limit per test 2.0 s m ...

  5. BZOJ 5093: [Lydsy1711月赛]图的价值 第二类斯特林数+NTT

    定义有向图的价值为图中每一个点的度数的 \(k\) 次方之和. 求:对于 \(n\) 个点的无向图所有可能情况的图的价值之和. 遇到这种题,八成是每个点单独算贡献,然后累加起来. 我们可以枚举一个点的 ...

  6. 【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)

    [BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1 ...

  7. bzoj 5093 [Lydsy1711月赛]图的价值 NTT+第二类斯特林数

    [Lydsy1711月赛]图的价值 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 245  Solved: 128[Submit][Status][D ...

  8. bzoj 5093 图的价值 —— 第二类斯特林数+NTT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5093 每个点都是等价的,从点的贡献来看,得到式子: \( ans = n * \sum\li ...

  9. BZOJ5093 图的价值——推式子+第二类斯特林数

    原题链接 题解 题目等价于求这个式子 \[ans=n2^{\frac{(n-1)(n-2)}{2}}\sum\limits_{i=0}^{n-1}\binom{n-1}{i}i^k\] 有这么一个式子 ...

随机推荐

  1. Orleans的入门教程

    Orleans的入门教程  官方Hello World 地址 https://github.com/dotnet/orleans/tree/master/Samples/2.0/HelloWorld ...

  2. IOS系统定时APP

    将页面分为时间显示部分,控制部分,显示计次共三个部分.实现的功能有:启动定时器,计次,停止,复位. 计算:当前显示的时间 = 当前计次的累积时间 + 已经结束的所有计次的累积时间和: 关于 new D ...

  3. unittest自动化测试框架

    目录 框架的概念 Unittest单元测试框架 常用的assert语句 unittest创建测试代码的方式: unittest构建测试套件(测试用例集合): unittest忽略测试用例: 运行测试集 ...

  4. AJAX 多次调用,后面的会覆盖前面的内容/数据

    1.有的时候,同一个请求链接,需要传递不同的参数,发起多个请求.因此我采用了for循环. 1.1 此处是需要传递的参数 function behavioranalysisReqstue(type) { ...

  5. xshell连接问题记录

    操作系统Ubuntu 18.04 安装ubuntu后,连接不上.ubuntu18会每次重启重写dns,导致每次开机ip地址都不一样,所以需要先固定IP ubuntu18.04固定ip 修改固定 IP ...

  6. java 反射的意义

    具体的关于反射的介绍可以参考我的另外一篇博文<深入解析java反射>. 反射的意义是什么,其实就是为了代码简洁,提高代码的复用率,外部调用方便,源代码,反编译都能看到. 某些情况下解耦用反 ...

  7. GHOST CMS - 创建自定义主页 Creating a custom home page

    创建自定义主页 Creating a custom home page 为你的网站创建一个自定义的主页是一个让你从人群中脱颖而出的好方法,并把你自己独特的印记存放在你的网上.本教程向您展示了如何在Gh ...

  8. SpringBoot电商项目实战 — 前后端分离后的优雅部署及Nginx部署实现

    在如今的SpringBoot微服务项目中,前后端分离已成为业界标准使用方式,通过使用nginx等代理方式有效的进行解耦,并且前后端分离会为以后的大型分布式架构.弹性计算架构.微服务架构.多端化服务(多 ...

  9. CVPR 2019轨迹预测竞赛冠军方法总结

    背景 CVPR 2019 是机器视觉方向最重要的学术会议,本届大会共吸引了来自全世界各地共计 5160 篇论文,共接收 1294 篇论文,投稿数量和接受数量都创下了历史新高,其中与自动驾驶相关的论文. ...

  10. EXT grid单元格点击时判断当前行是否可编辑

    var c_gridColumns = new Ext.grid.ColumnModel({ columns: [//列模式 c_sm, { header: "内码", dataI ...