数据挖掘作业,需要实现支持向量机进行分类,记录学习记录

环境:win10,Python 3.7.0

SVM的基本思想:在类别之间拟合可能的最宽的间距,也叫作最大间隔分类

书上提供的源代码绘制了两个图,一个是没用SVM的一个是用了SVM的,我做出了修改只画出使用了硬间隔SVM的图像,图像保存在当前目录的images文件夹下,如果没有此文件夹则需要进行创建

代码如下:

import numpy as np
import os
import matplotlib
import matplotlib.pyplot as plt
import warnings
from sklearn.svm import SVC
from sklearn import datasets
np.random.seed(42)
plt.rcParams['axes.labelsize'] = 14
plt.rcParams['xtick.labelsize'] = 12
plt.rcParams['ytick.labelsize'] = 12
# Where to save the figures
# 设定图片保存路径,这里写了一个函数,后面直接调用即可
PROJECT_ROOT_DIR = "."
IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, "images")
#保存图片
def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300):
path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension)
print("Saving figure", fig_id)
if tight_layout:
plt.tight_layout()
plt.savefig(path, format=fig_extension, dpi=resolution)
#画出分类界限
def plot_svc_decision_boundary(svm_clf, xmin, xmax):
w = svm_clf.coef_[0]
b = svm_clf.intercept_[0]
x0 = np.linspace(xmin, xmax, 200)
decision_boundary = -w[0]/w[1] * x0 - b/w[1]
margin = 1/w[1]
gutter_up = decision_boundary + margin
gutter_down = decision_boundary - margin
svs = svm_clf.support_vectors_
plt.scatter(svs[:, 0], svs[:, 1], s=180, facecolors='#FFAAAA')
plt.plot(x0, decision_boundary, "k-", linewidth=2)
plt.plot(x0, gutter_up, "k--", linewidth=2)
plt.plot(x0, gutter_down, "k--", linewidth=2)
# 忽略无用警告
warnings.filterwarnings(action="ignore", message="^internal gelsd")
iris = datasets.load_iris()
X = iris["data"][:, (2, 3)] # petal length, petal width
y = iris["target"]
setosa_or_versicolor = (y == 0) | (y == 1)
X = X[setosa_or_versicolor]
y = y[setosa_or_versicolor]
# SVM Classifier model
svm_clf = SVC(kernel="linear", C=float("inf"))
svm_clf.fit(X, y)
plot_svc_decision_boundary(svm_clf, 0, 5.5)
plt.plot(X[:, 0][y==1], X[:, 1][y==1], "bs")
plt.plot(X[:, 0][y==0], X[:, 1][y==0], "yo")
plt.xlabel("Petal length", fontsize=14)
plt.ylabel("Petal width", fontsize=14)
plt.axis([0, 5.5, 0, 2])
save_fig("硬间隔SVM分类")
plt.show()

机器学习实战:基于Scikit-Learn和TensorFlow 第5章 支持向量机 学习笔记(硬间隔)的更多相关文章

  1. 分享《机器学习实战基于Scikit-Learn和TensorFlow》中英文PDF源代码+《深度学习之TensorFlow入门原理与进阶实战》PDF+源代码

    下载:https://pan.baidu.com/s/1qKaDd9PSUUGbBQNB3tkDzw <机器学习实战:基于Scikit-Learn和TensorFlow>高清中文版PDF+ ...

  2. 【python与机器学习实战】感知机和支持向量机学习笔记(一)

    对<Python与机器学习实战>一书阅读的记录,对于一些难以理解的地方查阅了资料辅以理解并补充和记录,重新梳理一下感知机和SVM的算法原理,加深记忆. 1.感知机 感知机的基本概念 感知机 ...

  3. 基于.net的分布式系统限流组件 C# DataGridView绑定List对象时,利用BindingList来实现增删查改 .net中ThreadPool与Task的认识总结 C# 排序技术研究与对比 基于.net的通用内存缓存模型组件 Scala学习笔记:重要语法特性

    基于.net的分布式系统限流组件   在互联网应用中,流量洪峰是常有的事情.在应对流量洪峰时,通用的处理模式一般有排队.限流,这样可以非常直接有效的保护系统,防止系统被打爆.另外,通过限流技术手段,可 ...

  4. 机器学习实战:基于Scikit-Learn和TensorFlow 读书笔记 第6章 决策树

    数据挖掘作业,要实现决策树,现记录学习过程 win10系统,Python 3.7.0 构建一个决策树,在鸢尾花数据集上训练一个DecisionTreeClassifier: from sklearn. ...

  5. 集成算法(chapter 7 - Hands on machine learning with scikit learn and tensorflow)

    Voting classifier 多种分类器分别训练,然后分别对输入(新数据)预测/分类,各个分类器的结果视为投票,投出最终结果: 训练: 投票: 为什么三个臭皮匠顶一个诸葛亮.通过大数定律直观地解 ...

  6. 【Python机器学习实战】感知机和支持向量机学习笔记(三)之SVM的实现

    前面已经对感知机和SVM进行了简要的概述,本节是SVM算法的实现过程用于辅助理解SVM算法的具体内容,然后借助sklearn对SVM工具包进行实现. SVM算法的核心是SMO算法的实现,首先对SMO算 ...

  7. ASP.NET Core基于K8S的微服务电商案例实践--学习笔记

    摘要 一个完整的电商项目微服务的实践过程,从选型.业务设计.架构设计到开发过程管理.以及上线运维的完整过程总结与剖析. 讲师介绍 产品需求介绍 纯线上商城 线上线下一体化 跨行业 跨商业模式 从0开始 ...

  8. 《基于MVC的JavaScript Web富应用开发》学习笔记

    第1章 MVC和类 1. 什么是MVC? MVC是一种设计模式, 它将应用划分为3个部分: 数据(模型, Model), 展现层(视图, View) 和用户交互层(控制器, Controller). ...

  9. 推荐《机器学习实战:基于Scikit-Learn和TensorFlow》高清中英文PDF+源代码

    探索机器学习,使用Scikit-Learn全程跟踪一个机器学习项目的例子:探索各种训练模型:使用TensorFlow库构建和训练神经网络,深入神经网络架构,包括卷积神经网络.循环神经网络和深度强化学习 ...

随机推荐

  1. Android Studio当中的创建新方法的快捷键该如何使用?

    当有红线出现的时候,我们的代码并没有编译出错,则需要输入alt+enter则可以得到相应的神奇效果了.这个方法我竟然今天才知道,也真是丢脸了.比如说我们书写了一个新的没有创建的方法,我们直接输入alt ...

  2. 当cell中有UItextfiled或者UITextVIew时,弹出键盘把tableview往上,但是有的cell没有移动

    cell中有UITextView时,输入文字是需要将tableView向上移,基本的做法是,注册键盘变化的通知在通知的方法中做tableVIew的位置调整, 一,一般做法 - (void)regist ...

  3. jenkins解决乱码

    1.Jenkins系统设置中修改 点击左侧“系统管理”——右侧选择“系统设置”——“全局属性”,选择第一项:Environment variables,键值对列表,点击增加: 键:LANG 值:zh. ...

  4. [20190920]完善vim调用sqlplus脚本.txt

    [20190920]完善vim调用sqlplus脚本.txt --//以前写的http://blog.itpub.net/267265/viewspace-2140936/=>[20170617 ...

  5. golang的析构函数

    runtime.SetFinalizer 使用这个函数可以给一个对象设置一个析构函数,如果这个对象没有引用了,那么就会调用这个析构函数,然后会把这个对象给释放掉

  6. python中动态创建类

    class Foo(Bar): pass Foo中有__metaclass__这个属性吗?如果是,Python会在内存中通过__metaclass__创建一个名字为Foo的类对象(我说的是类对象,请紧 ...

  7. 学习:SpringCloud(一)

    微服务: 微服务是一种架构模式或者一种架构风格,提倡将单一应用程序划分成一组小的服务==独立部署==,服务之间相互配合.相互协调,每个服务运行于自己的==进程==中. 服务与服务间采用轻量级通讯,如H ...

  8. minimize.m:共轭梯度法更新BP算法权值

    minimize.m:共轭梯度法更新BP算法权值 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ Carl Edward Rasmussen在高斯机器学 ...

  9. vue+node+elementUI实现分页功能

    第1===>收集当前页码 和 每页显示条数 第2==>发送ajax请求页码 和 每页显示条数发送给后端 第3===>接收后端返回的数据总条数 total 和 当前页码的数据 data ...

  10. 【cf375】D. Tree and Queries(dsu on tree+线段树)

    传送门 题意: 给出一颗以\(1\)为根的有根树,每个结点有个颜色\(c_i\). 之后要回答\(m\)组询问,每组询问包含\(v_i,k_i\),要回答以\(v_i\)为根的子树中,颜色出现次数不小 ...