[luogu 3803]【模板】多项式乘法
传送门
FFT
#include<bits/stdc++.h>
#define ll long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*f;
}
#define MN 2097152
const double Pi=std::acos(-1.);
struct complex
{
double x,y;
complex(double x=0,double y=0):x(x),y(y){}
inline complex operator+(const complex& o)const{return complex(x+o.x,y+o.y);}
inline complex operator-(const complex& o)const{return complex(x-o.x,y-o.y);}
inline complex operator*(const complex& o)const{return complex(x*o.x-y*o.y,x*o.y+y*o.x);}
inline void swap(complex& o){register complex t=o;o=(*this);*this=t;}
}a[MN],b[MN];
int N,di,pos[MN];
inline void FFT(complex *a,int type)
{
register int i,j,p,k;
for(i=0;i<N;++i)if(i<pos[i])a[i].swap(a[pos[i]]);
for(i=1;i<N;i<<=1)
{
complex wn(cos(Pi/i),type*sin(Pi/i));
for(p=i<<1,j=0;j<N;j+=p)
{
complex w(1,0);
for(k=0;k<i;++k,w=w*wn)
{
complex X=a[j+k],Y=w*a[j+i+k];
a[j+k]=X+Y;a[j+i+k]=X-Y;
}
}
}
}
int main()
{
register int n,m,i;
n=read();m=read();
for(i=0;i<=n;++i) a[i].x=read();
for(i=0;i<=m;++i) b[i].x=read();
for(N=1;N<=n+m;N<<=1,di++);
for(i=0;i<N;++i) pos[i]=(pos[i>>1]>>1)|((i&1)<<(di-1));
FFT(a,1);FFT(b,1);
for(i=0;i<N;++i) a[i]=a[i]*b[i];
FFT(a,-1);
for(i=0;i<=n+m;++i) printf("%d ",(int)(a[i].x/N+.5));
return 0;
}
NTT
#include<bits/stdc++.h>
#define ll long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define swap(x,y) (x^=y^=x^=y)
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*f;
}
#define MN 2097152
int N,di,pos[MN];
ll a[MN],b[MN],invN;
#define mod 998244353
#define g 3
#define invg 332748118
inline ll fpow(ll x,int m){ll res=1;for(;m;m>>=1,x=x*x%mod) (m&1)?res=res*x%mod:0;return res;}
inline void NTT(ll *a,int type)
{
register int i,j,p,k;
for(i=0;i<N;++i)if(i<pos[i]) swap(a[i],a[pos[i]]);
for(i=1;i<N;i<<=1)
{
ll wn=fpow(type>0?g:invg,(mod-1)/(i<<1));
for(p=i<<1,j=0;j<N;j+=p)
{
ll w=1;
for(k=0;k<i;++k,w=w*wn%mod)
{
ll X=a[j+k],Y=w*a[j+i+k]%mod;
a[j+k]=(X+Y)%mod;a[j+i+k]=(X-Y+mod)%mod;
}
}
}
}
int main()
{
register int n,m,i;
n=read();m=read();
for(i=0;i<=n;++i) a[i]=(read()+mod)%mod;
for(i=0;i<=m;++i) b[i]=(read()+mod)%mod;
for(N=1;N<=n+m;N<<=1,di++);
for(i=0;i<N;++i) pos[i]=(pos[i>>1]>>1)|((i&1)<<(di-1));
NTT(a,1);NTT(b,1);
for(i=0;i<N;++i) a[i]=a[i]*b[i]%mod;
NTT(a,-1);invN=fpow(N,mod-2);
for(i=0;i<=n+m;++i) printf("%lld ",a[i]*invN%mod);
return 0;
}
Blog来自PaperCloud,未经允许,请勿转载,TKS!
[luogu 3803]【模板】多项式乘法的更多相关文章
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- 洛谷.3803.[模板]多项式乘法(NTT)
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...
- [模板] 多项式: 乘法/求逆/分治fft/微积分/ln/exp/幂
多项式 代码 const int nsz=(int)4e5+50; const ll nmod=998244353,g=3,ginv=332748118ll; //basic math ll qp(l ...
- luogu P2553 [AHOI2001]多项式乘法
传送门 这题就是普及暴力模拟板子FFT板子,只要把多项式读入进来FFT一下就好了(不会的右转P3803) 重点是读入,我本以为这个字符串里到处都有空格,这里提供一种简单思路: 因为里面可能有空格,所以 ...
- P3803 [模板] 多项式乘法 (FFT)
Rt 注意len要为2的幂 #include <bits/stdc++.h> using namespace std; const double PI = acos(-1.0); inli ...
- 【luogu P3803】【模板】多项式乘法(FFT)
[模板]多项式乘法(FFT) 题目链接:luogu P3803 题目大意 给你两个多项式,要你求这两个多项式乘起来得到的多项式.(卷积) 思路 系数表示法 就是我们一般来表示一个多项式的方法: \(A ...
- FFT模板(多项式乘法)
FFT模板(多项式乘法) 标签: FFT 扯淡 一晚上都用来捣鼓这个东西了...... 这里贴一位神犇的博客,我认为讲的比较清楚了.(刚好适合我这种复数都没学的) http://blog.csdn.n ...
- FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...
- 洛谷P3803 【模板】多项式乘法 [NTT]
题目传送门 多项式乘法 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字, ...
- 洛谷P3803 【模板】多项式乘法(FFT)
P3803 [模板]多项式乘法(FFT) 题目背景 这是一道FFT模板题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: ...
随机推荐
- Linux系统中五款好用的日志分析工具
监控网络活动是一项繁琐的工作,但有充分的理由这样做.例如,它允许你查找和调查工作站和连接到网络的设备及服务器上的可疑登录,同时确定管理员滥用了什么.你还可以跟踪软件安装和数据传输,以实时识别潜在问题, ...
- GitHub上传文件夹
1.输入自己的用户名和邮箱 为注册GitHub账号时所用的用户名和邮箱;我的用户名为“1997ST2016”,邮箱为“1324971964@qq.com ”. $ git config --globa ...
- CentOS - 查看操作系统版本
cat /etc/redhat-release 参考: https://www.cnblogs.com/baby123/p/6962398.html
- c# 表达式目录树拷贝对象(根据对象类型动态生成表达式目录树)
表达式目录树,在C#中用Expression标识,这里就不介绍表达式目录树是什么了,有兴趣可以自行百度搜索,网上资料还是很多的. 这里主要分享的是如何动态构建表达式目录树. 构建表达式目录树的代码挺简 ...
- mysql学习之基础篇07
视图:view 在查询的时候我们经常把查询到的结果当成一张临时表来看,其实view就可以看成一张虚拟表,是表通过某种运算得到的投影 那么如何创建视图?创建视图需要指定视图的列名和列类型吗? 答:不用, ...
- zabbix Server 4.0 触发器(Trigger)篇
zabbix Server 4.0 触发器(Trigger)篇 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.触发器(Trigger)概述 1>.上一篇博客我们介绍了“内 ...
- MySQL数据库开发规范-EC
最近一段时间一边在线上抓取SQL来优化,一边在整理这个开发规范,尽量减少新的问题SQL进入生产库.今天也是对公司的开发做了一次培训,PPT就不放上来了,里面有十来个生产SQL的案例.因为规范大部分还是 ...
- String/StringBuffer
1. 将String中的空格替换成 %20 public class ReplaceBlank { public static void main(String[] args) { String st ...
- 163data.com.cn data
163data.com.cn是什么?终于搞清楚了... 查看文章 163data.com.cn是什么?终于搞清楚了... 2008-05-31 00:41 一场误会,真TN的无聊的吓人从日 ...
- python 判断返回值是否是字典
背景: 小鱼最近再调一个小工程时,需要对返回值进行处理(返回值如下),有的返回值 有data1 有的没有:需要做个判断,判断是否含有该key值 返回值: res1 = {"result&qu ...