应该很容易想到暴力骗分。

我们考虑暴力\(dfs\)枚举所有行的选择,列的选择,每次跑一遍记下分值即可。

时间复杂度:\(O(C_n^r \times C_m^c \times r \times c)\)

可以水过\(60pts\)。

#include<bits/stdc++.h>
#define INF 1000000007
using namespace std;
inline int read(){
register int s=0,f=1;
register char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f*=-1;ch=getchar();}
while(isdigit(ch))s=(s<<1)+(s<<3)+(ch^48),ch=getchar();
return s*f;
}
const int N=20;
int n,m,r,c,ans=INF;
int a[N][N],fh[N],fl[N];
int solve(){
int sum=0;
for(int i=1;i<=r;i++){
for(int j=1;j<c;j++){
sum+=abs(a[fh[i]][fl[j]]-a[fh[i]][fl[j+1]]);
}
}
for(int j=1;j<=c;j++){
for(int i=1;i<r;i++){
sum+=abs(a[fh[i]][fl[j]]-a[fh[i+1]][fl[j]]);
}
}
return sum;
}
void dfsl(int dep,int cnt){
if(cnt>c){ans=min(ans,solve());return;}
if(dep>m)return;
fl[cnt]=dep;dfsl(dep+1,cnt+1);
fl[cnt]=0;dfsl(dep+1,cnt);
}
void dfsh(int dep,int cnt){
if(cnt>r){dfsl(1,1);return;}
if(dep>n)return;
fh[cnt]=dep;dfsh(dep+1,cnt+1);
fh[cnt]=0;dfsh(dep+1,cnt);
}
int main(){
ios::sync_with_stdio(false);
n=read(),m=read(),r=read(),c=read();
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
a[i][j]=read();
}
}
dfsh(1,1);
cout<<ans<<endl;
return 0;
}

【算法分析】

我们依然先来枚举行的选择,于是接下来问题就转化成了:

  • 一个\(r \times m\)的矩阵选\(c\)列,使其分值最小。

显然,这是一个\(01\)选择列的问题,所以我们直接\(dp\)就好了。

设状态\(dp[i][j]\)表示当前选择第\(i\)列的同时已经选择了\(j\)列的最小分数。

接下来我们预处理好两个东西:

  • \(up[i]\)表示在当前行选择下第\(i\)列的总分值。

  • \(num[i][j]\)表示在当前行选择下连接第\(i\)列和第\(j\)列的分值。

那么对于第\(dp[i][j]\),我们只需再枚举一个第\(k\)列。当连接第\(k\)列和第\(i\)列时,价值即为本身第\(i\)列的分值\(up[i]\)和连接两列的分值\(num[i][k]\)。

于是不难推出:

\[dp[i][j]=min\{ dp[k][j-1]+up[i]+num[k][i] \}
\]

\[i \in [1,m],j\in[2,min(i,c)],k \in[1,i)
\]

边界处理:

\[dp=\{0x7f\},dp[i][1]=up[i]
\]

更新最小分值:

\[ans=min\{dp[i][c]\}
\]

时间复杂度:\(O(C_n^r \times m^2n)\)

#include<bits/stdc++.h>
#define INF 1000000007
using namespace std;
inline int read(){
register int s=0,f=1;
register char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f*=-1;ch=getchar();}
while(isdigit(ch))s=(s<<1)+(s<<3)+(ch^48),ch=getchar();
return s*f;
}
const int N=20;
int n,m,r,c,ans=INF;
int a[N][N],f[N],up[N],num[N][N],dp[N][N];
void solve(){
memset(up,0,sizeof(up));
memset(num,0,sizeof(num));
for(int j=1;j<=m;j++){
for(int i=1;i<r;i++){
up[j]+=abs(a[f[i]][j]-a[f[i+1]][j]);
}
}
for(int i=1;i<=m;i++){
for(int j=i+1;j<=m;j++){
for(int k=1;k<=r;k++){
num[i][j]+=abs(a[f[k]][i]-a[f[k]][j]);
}
}
}
memset(dp,0x7f,sizeof(dp));
int tot=INF;
for(int i=1;i<=m;i++){
dp[i][1]=up[i];
for(int j=2;j<=min(i,c);j++){
for(int k=1;k<i;k++){
dp[i][j]=min(dp[i][j],dp[k][j-1]+up[i]+num[k][i]);
}
}
tot=min(tot,dp[i][c]);
}
ans=min(ans,tot);
}
void dfs(int dep,int cnt){
if(cnt>r){solve();return;}
if(dep>n)return;
f[cnt]=dep;dfs(dep+1,cnt+1);
f[cnt]=0;dfs(dep+1,cnt);
}
int main(){
ios::sync_with_stdio(false);
n=read(),m=read(),r=read(),c=read();
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
a[i][j]=read();
}
}
dfs(1,1);
cout<<ans<<endl;
return 0;
}

\(\operatorname{Update}\) \(\operatorname{On}\) \(\operatorname{2019.10.29}\)

题解 洛谷P2258 【子矩阵】的更多相关文章

  1. 洛谷 P2258 子矩阵 解题报告

    P2258 子矩阵 题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第 2 . 4行和第 ...

  2. 洛谷P2258 子矩阵

    P2258 子矩阵 题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4 ...

  3. 洛谷P2258 子矩阵——题解

    题目传送 表示一开始也是一脸懵逼,虽然想到了DP,但面对多变的状态不知从何转移及怎么合理记录状态.之(借鉴大佬思路)后,豁然开朗,于是在AC后分享一下题解. 发现数据范围出奇地小,不过越是小的数据范围 ...

  4. 洛谷P2258 子矩阵 题解 状态压缩/枚举/动态规划

    作者:zifeiy 标签:状态压缩.枚举.动态规划 题目链接:https://www.luogu.org/problem/P2258 这道题目状态压缩是肯定的,我们需要用二进制来枚举状态. 江湖上有一 ...

  5. 洛谷 P2258 子矩阵

    题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4.5列交叉位置的元素 ...

  6. 洛谷P2258 子矩阵[2017年5月计划 清北学堂51精英班Day1]

    题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4.5列交叉位置的元素 ...

  7. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  8. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  9. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

随机推荐

  1. celery无法启动的问题 SyntaxError: invalid syntax

    遇到了celery无法启动的问题,报错:SyntaxError: invalid syntax ,这是因为我使用的python版本为最新3.7.3 ,而async已经作为关键字而存在了 在 celer ...

  2. iOS @功能的部分实现思路

    需求描述 1. 发布信息时,通过键盘键入@符号,或者点选相关功能键,唤醒@列表,进行选择 2.选择结束后,输入栏改色显示相关内容 3.删除时,整体删除@区块,且不能让光标落在@区块之间 实现步骤 1. ...

  3. Mysql中类似于Oracle中connect by ... start with的查询语句(木大看懂)

    表结构 create table sys_branch ( id ) not null, parent_id ), branch_name ), delete_flag ), primary key ...

  4. 阿里P8架构师谈:阿里双11秒杀系统如何设计?

    秒杀是电商业务里的标志性事件,这样的典型高并发场景会遇见什么样的挑战呢,然后又是如何来解决的呢? 秒杀活动场景 淘宝双11秒杀场景,大量的用户短时间内涌入,瞬间流量巨大(高并发),比如:1000万人同 ...

  5. Mybatis中实体类属性与数据库列表间映射方法介绍

               这篇文章主要介绍了Mybatis中实体类属性与数据列表间映射方法介绍,一共四种方法方法,供大家参考.         Mybatis不像Hibernate中那么自动化,通过@Co ...

  6. LOJ2882 JOISC2014 两个人的星座 计算几何

    传送门 一件值得注意的事情是:平面上两个不相交的三角形一定会存在两条公切线 那么我们可以枚举三角形的公切线,计算有多少个三角形的公切线之一为该线,所有的答案除以2就是我们要求的答案. 考虑如何去计算有 ...

  7. 在jenkins中使用shell命令推送当前主机上的docker镜像到远程的Harbor私有仓库

    1.jenkins主机上的docker配置 先在Jenkins主机的docke上配置上Harbor私有仓库地址 cat /etc/docker/daemon.json { "insecure ...

  8. Centos Consul集群及Acl配置

    一,准备工作 准备四台centos服务器,三台用于consul server 高可用集群,一台用于consul client作服务注册及健康检查.架构如下图所示 二,在四台服务器上安装consul 1 ...

  9. “SQL Server does not exist or access denied.”

    Have resolved the problem, the Port was different and so the Connection String now reads: <connec ...

  10. ADO.NET 四(DataReader)

    DataReader 类概述 DataReader 类对应MSSQLSERVER在 System.Data.SqlClient 命名空间中,对应的类是 SqlDataReader,主要用于读取表中的查 ...