around
np.around 返回四舍五入后的值,可指定精度。

around(a, decimals=0, out=None)

a 输入数组

decimals 要舍入的小数位数。 默认值为0。 如果为负,整数将四舍五入到小数点左侧的位置

·

# -*- coding: utf-8 -*-
"""
@author: tz_zs
"""
import numpy as np

n = np.array([-0.746, 4.6, 9.4, 7.447, 10.455, 11.555])

around1 = np.around(n)
print(around1) # [ -1. 5. 9. 7. 10. 12.]

around2 = np.around(n, decimals=1)
print(around2) # [ -0.7 4.6 9.4 7.4 10.5 11.6]

around3 = np.around(n, decimals=-1)
print(around3) # [ -0. 0. 10. 10. 10. 10.]
·

floor
np.floor 返回不大于输入参数的最大整数。 即对于输入值 x ,将返回最大的整数 i ,使得 i <= x。 注意在Python中,向下取整总是从 0 舍入。

·

# -*- coding: utf-8 -*-
"""
@author: tz_zs
"""
import numpy as np

n = np.array([-1.7, -2.5, -0.2, 0.6, 1.2, 2.7, 11])

floor = np.floor(n)
print(floor) # [ -2. -3. -1. 0. 1. 2. 11.]

·

ceil
np.ceil 函数返回输入值的上限,即对于输入 x ,返回最小的整数 i ,使得 i> = x。

# -*- coding: utf-8 -*-
"""
@author: tz_zs
"""
import numpy as np

n = np.array([-1.7, -2.5, -0.2, 0.6, 1.2, 2.7, 11])

ceil = np.ceil(n)
print(ceil) # [ -1. -2. -0. 1. 2. 3. 11.]
·

np.where
numpy.where(condition[, x, y])

根据 condition 从 x 和 y 中选择元素,当为 True 时,选 x,否则选 y。

https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html

.

import numpy as np

data = np.random.random([2, 3])
print data
'''
[[ 0.93122679 0.82384876 0.28730977]
[ 0.43006042 0.73168913 0.02775572]]
'''

result = np.where(data > 0.5, data, 0)
print result
'''
[[ 0.93122679 0.82384876 0. ]
[ 0. 0.73168913 0. ]]
'''

【NumPy】 之常见运算(np.around、np.floor、np.ceil、np.where)的更多相关文章

  1. 【NumPy】 之常见运算(np.around、np.floor、np.ceil、np.where)(转)

    原博客链接:https://blog.csdn.net/tz_zs/article/details/80775256 np.around: 四舍五入取整 n = np.array([-0.746, 4 ...

  2. Numpy 基本除法运算和模运算

    基本算术运算符+.-和*隐式关联着通用函数add.subtract和multiply 在数组的除法运算中涉及三个通用函数divide.true_divide和floor_division,以及两个对应 ...

  3. P问题、NP问题、NPC问题、NP难问题的概念

    P问题.NP问题.NPC问题.NP难问题的概念 离入职尚有几天时间,闲来无事,将大家常见却又很容易搞糊涂的几个概念进行整理,希望对大家有所帮助.你会经常看到网上出现“这怎么做,这不是NP问题吗”.“这 ...

  4. numpy的基础运算2-【老鱼学numpy】

    numpy的基础运算中还有很多运算,我们这里再记录一些. 最小/大值索引 前面一篇博文中我们讲述过如何获得数组中的最小值,这里我们获得最小/大值的索引值,也就是这个最小/大值在整个数组中位于第几位. ...

  5. numpy 数组集合运算及下标操作

    1. 数组的集合运算 1.1. 并集 np.union1d(a,b)计算数组的并集: In [1]: import numpy as np In [2]: a = np.array([1,2,3]) ...

  6. numpy数组的运算

    numpy数组的运算 数组的乘法 >>> import numpy as np >>> arr=np.array([[1,2,3],[4,5,6]]) >&g ...

  7. 深度学习实践-物体检测-faster-RCNN(原理和部分代码说明) 1.tf.image.resize_and_crop(根据比例取出特征层,进行维度变化) 2.tf.slice(数据切片) 3.x.argsort()(对数据进行排列,返回索引值) 4.np.empty(生成空矩阵) 5.np.meshgrid(生成二维数据) 6.np.where(符合条件的索引) 7.tf.gather取值

    1. tf.image.resize_and_crop(net, bbox, 256, [14, 14], name)  # 根据bbox的y1,x1,y2,x2获得net中的位置,将其转换为14*1 ...

  8. 深度学习原理与框架-神经网络-cifar10分类(代码) 1.np.concatenate(进行数据串接) 2.np.hstack(将数据横着排列) 3.hasattr(判断.py文件的函数是否存在) 4.reshape(维度重构) 5.tanspose(维度位置变化) 6.pickle.load(f文件读入) 7.np.argmax(获得最大值索引) 8.np.maximum(阈值比较)

    横1. np.concatenate(list, axis=0) 将数据进行串接,这里主要是可以将列表进行x轴获得y轴的串接 参数说明:list表示需要串接的列表,axis=0,表示从上到下进行串接 ...

  9. numpy的基础运算1

    import numpy as np #int16和int32内存少,int64内存大但精度高 a = np.array([1,23,4],dtype=np.int32) b = np.zeros(( ...

随机推荐

  1. Xshell6和Xftp6 破解免安装版,无窗口多开限制

    免安装无窗口限制破解版 链接:https://pan.baidu.com/s/1wpFE499qoTjqHrPdQmTn4g提取码:2xcn 如上面的链接失效,可使用以下的链接: https://pa ...

  2. ELK Stack部署

    部署ELK Stack 官网:https://www.elastic.co 环境准备: ip hostname 服务 用户.组 192.168.20.3 node2003 kibana6.5,file ...

  3. .pro文件部分命令详解

    #引入c++11 CONFIG += C++11 # 引入头文件的路径 INCLUDEPATH += D:\opencv\opencv3.2\configure\install\include # 引 ...

  4. 第六周测试补交 多线程代码和sumN

    1.多线程代码 要求:编译运行多线程程序,提交编译和运行命令截图 2.sumN 要求:1-N求和的截图

  5. 1.zookeeper是干什么的?

    Zookeeper是Hadoop的一个子项目,虽然源自hadoop,但是我发现zookeeper脱离hadoop的范畴开发分布式框架的运用越来越多.今天我想谈谈zookeeper,本文不谈如何使用zo ...

  6. Yarn (转自之乎者也)

    作者:青俞链接:https://www.zhihu.com/question/34016617/answer/57822812来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出 ...

  7. favicon.ico设置,HtmlWebpackPlugin插件配置多页面等

  8. 2019牛客多校第九场AThe power of Fibonacci——扩展BM

    题意 求斐波那契数列m次方的前n项和,模数为 $1e9$. 分析 线性递推乘线性递推仍是线性递推,所以上BM. 由于模数非质数,上扩展版的BM. 递推多少项呢?本地输入发现最大为与前57项有关(而且好 ...

  9. tensorflow2.0 学习(三)

    用tensorflow2.0 版回顾了一下mnist的学习 代码如下,感觉这个版本下的mnist学习更简洁,更方便 关于tensorflow的基础知识,这里就不更新了,用到什么就到网上取搜索相关的知识 ...

  10. 使用rrweb 进行web 操作录制以及回放

    rrweb 是使用typescript 开发的web 操作录制以及回放框架,包含了比较完整的系统组件 rrweb-snapshot 进行dom 与操作实践的关联处理 rrweb 主要包含了record ...