原文地址:https://www.hangge.com/blog/cache/detail_1638.html

2015年6月, ES2015(即 ECMAScript 6、ES6) 正式发布。其中 Promise 被列为正式规范,成为 ES6 中最重要的特性之一。

 

1,then()方法

简单来讲,then 方法就是把原来的回调写法分离出来,在异步操作执行完后,用链式调用的方式执行回调函数。
而 Promise 的优势就在于这个链式调用。我们可以在 then 方法中继续写 Promise 对象并返回,然后继续调用 then 来进行回调操作。
 
(1)下面通过样例作为演示,我们定义做饭、吃饭、洗碗(cook、eat、wash)这三个方法,它们是层层依赖的关系,下一步的的操作需要使用上一部操作的结果。(这里使用 setTimeout 模拟异步操作)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
//做饭
function cook(){
    console.log('开始做饭。');
    var p = new Promise(function(resolve, reject){        //做一些异步操作
        setTimeout(function(){
            console.log('做饭完毕!');
            resolve('鸡蛋炒饭');
        }, 1000);
    });
    return p;
}
 
//吃饭
function eat(data){
    console.log('开始吃饭:' + data);
    var p = new Promise(function(resolve, reject){        //做一些异步操作
        setTimeout(function(){
            console.log('吃饭完毕!');
            resolve('一块碗和一双筷子');
        }, 2000);
    });
    return p;
}
 
function wash(data){
    console.log('开始洗碗:' + data);
    var p = new Promise(function(resolve, reject){        //做一些异步操作
        setTimeout(function(){
            console.log('洗碗完毕!');
            resolve('干净的碗筷');
        }, 2000);
    });
    return p;
}

(2)使用 then 链式调用这三个方法:

1
2
3
4
5
6
7
8
9
10
cook()
.then(function(data){
    return eat(data);
})
.then(function(data){
    return wash(data);
})
.then(function(data){
    console.log(data);
});

当然上面代码还可以简化成如下:

1
2
3
4
5
6
cook()
.then(eat)
.then(wash)
.then(function(data){
    console.log(data);
});

(3)运行结果如下:

2,reject()方法

上面样例我们通过 resolve 方法把 Promise 的状态置为完成态(Resolved),这时 then 方法就能捕捉到变化,并执行“成功”情况的回调。
而 reject 方法就是把 Promise 的状态置为已失败(Rejected),这时 then 方法执行“失败”情况的回调(then 方法的第二参数)。
 
(1)下面同样使用一个样例做演示
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
//做饭
function cook(){
    console.log('开始做饭。');
    var p = new Promise(function(resolve, reject){        //做一些异步操作
        setTimeout(function(){
            console.log('做饭失败!');
            reject('烧焦的米饭');
        }, 1000);
    });
    return p;
}
 
//吃饭
function eat(data){
    console.log('开始吃饭:' + data);
    var p = new Promise(function(resolve, reject){        //做一些异步操作
        setTimeout(function(){
            console.log('吃饭完毕!');
            resolve('一块碗和一双筷子');
        }, 2000);
    });
    return p;
}
 
cook()
.then(eat, function(data){
  console.log(data + '没法吃!');
})

运行结果如下:

(2)如果我们只要处理失败的情况可以使用 then(null, ...),或是使用接下来要讲的 catch 方法。
1
2
3
4
cook()
.then(nullfunction(data){
  console.log(data + '没法吃!');
})

3,catch()方法

(1)它可以和 then 的第二个参数一样,用来指定 reject 的回调

1
2
3
4
5
cook()
.then(eat)
.catch(function(data){
    console.log(data + '没法吃!');
});

(2)它的另一个作用是,当执行 resolve 的回调(也就是上面 then 中的第一个参数)时,如果抛出异常了(代码出错了),那么也不会报错卡死 js,而是会进到这个 catch 方法中。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
//做饭
function cook(){
    console.log('开始做饭。');
    var p = new Promise(function(resolve, reject){        //做一些异步操作
        setTimeout(function(){
            console.log('做饭完毕!');
            resolve('鸡蛋炒饭');
        }, 1000);
    });
    return p;
}
 
//吃饭
function eat(data){
    console.log('开始吃饭:' + data);
    var p = new Promise(function(resolve, reject){        //做一些异步操作
        setTimeout(function(){
            console.log('吃饭完毕!');
            resolve('一块碗和一双筷子');
        }, 2000);
    });
    return p;
}
 
cook()
.then(function(data){
    throw new Error('米饭被打翻了!');
    eat(data);
})
.catch(function(data){
    console.log(data);
});

运行结果如下:

这种错误的捕获是非常有用的,因为它能够帮助我们在开发中识别代码错误。比如,在一个 then() 方法内部的任意地方,我们做了一个 JSON.parse() 操作,如果 JSON 参数不合法那么它就会抛出一个同步错误。用回调的话该错误就会被吞噬掉,但是用 promises 我们可以轻松的在 catch() 方法里处理掉该错误。
 
(3)还可以添加多个 catch,实现更加精准的异常捕获。
1
2
3
4
5
6
7
8
9
10
11
somePromise.then(function() {
 return a();
}).catch(TypeError, function(e) {
 //If a is defined, will end up here because
 //it is a type error to reference property of undefined
}).catch(ReferenceError, function(e) {
 //Will end up here if a wasn't defined at all
}).catch(function(e) {
 //Generic catch-the rest, error wasn't TypeError nor
 //ReferenceError
});
 

4,all()方法

Promise 的 all 方法提供了并行执行异步操作的能力,并且在所有异步操作执行完后才执行回调。
 
(1)比如下面代码,两个个异步操作是并行执行的,等到它们都执行完后才会进到 then 里面。同时 all 会把所有异步操作的结果放进一个数组中传给 then。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
//切菜
function cutUp(){
    console.log('开始切菜。');
    var p = new Promise(function(resolve, reject){        //做一些异步操作
        setTimeout(function(){
            console.log('切菜完毕!');
            resolve('切好的菜');
        }, 1000);
    });
    return p;
}
 
//烧水
function boil(){
    console.log('开始烧水。');
    var p = new Promise(function(resolve, reject){        //做一些异步操作
        setTimeout(function(){
            console.log('烧水完毕!');
            resolve('烧好的水');
        }, 1000);
    });
    return p;
}
 
Promise
.all([cutUp(), boil()])
.then(function(results){
    console.log("准备工作完毕:");
    console.log(results);
});

(2)运行结果如下:

5,race()方法

race 按字面解释,就是赛跑的意思。race 的用法与 all 一样,只不过 all 是等所有异步操作都执行完毕后才执行 then 回调。而 race 的话只要有一个异步操作执行完毕,就立刻执行 then 回调。
注意:其它没有执行完毕的异步操作仍然会继续执行,而不是停止。
 
(1)这里我们将上面样例的 all 改成 race
1
2
3
4
5
6
Promise
.race([cutUp(), boil()])
.then(function(results){
    console.log("准备工作完毕:");
    console.log(results);
});
 
(2)race 使用场景很多。比如我们可以用 race 给某个异步请求设置超时时间,并且在超时后执行相应的操作。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
//请求某个图片资源
function requestImg(){
    var p = new Promise(function(resolve, reject){
    var img = new Image();
    img.onload = function(){
       resolve(img);
    }
    img.src = 'xxxxxx';
    });
    return p;
}
 
//延时函数,用于给请求计时
function timeout(){
    var p = new Promise(function(resolve, reject){
        setTimeout(function(){
            reject('图片请求超时');
        }, 5000);
    });
    return p;
}
 
Promise
.race([requestImg(), timeout()])
.then(function(results){
    console.log(results);
})
.catch(function(reason){
    console.log(reason);
});

上面代码 requestImg 函数异步请求一张图片,timeout 函数是一个延时 5 秒的异步操作。我们将它们一起放在 race 中赛跑。

  • 如果 5 秒内图片请求成功那么便进入 then 方法,执行正常的流程。
  • 如果 5 秒钟图片还未成功返回,那么则进入 catch,报“图片请求超时”的信息。

[转]JS - Promise使用详解2(ES6中的Promise)的更多相关文章

  1. Promise入门详解

    异步调用 异步 JavaScript的执行环境是单线程. 所谓单线程,是指JS引擎中负责解释和执行JavaScript代码的线程只有一个,也就是一次只能完成一项任务,这个任务执行完后才能执行下一个,它 ...

  2. ES6,ES2105核心功能一览,js新特性详解

    ES6,ES2105核心功能一览,js新特性详解 过去几年 JavaScript 发生了很大的变化.ES6(ECMAScript 6.ES2105)是 JavaScript 语言的新标准,2015 年 ...

  3. JS - Promise使用详解--摘抄笔记

    第一部分: JS - Promise使用详解1(基本概念.使用优点) 一.promises相关概念 promises 的概念是由 CommonJS 小组的成员在 Promises/A 规范中提出来的. ...

  4. Js apply方法与call方法详解 附ES6新写法

    我在一开始看到javascript的函数apply和call时,非常的模糊,看也看不懂,最近在网上看到一些文章对apply方法和call的一些示例,总算是看的有点眉目了,在这里我做如下笔记,希望和大家 ...

  5. es6的promise用法详解

    es6的promise用法详解 promise 原理 promise是es6的异步编程解决方案, 是es6封装好的对象: 一个promise有三种状态:Pending(进行中).Resolved(已完 ...

  6. 《Node.js开发实战详解》学习笔记

    <Node.js开发实战详解>学习笔记 ——持续更新中 一.NodeJS设计模式 1 . 单例模式 顾名思义,单例就是保证一个类只有一个实例,实现的方法是,先判断实例是否存在,如果存在则直 ...

  7. Js apply 方法 详解

    Js apply方法详解 我在一开始看到JavaScript的函数apply和call时,非常的模糊,看也看不懂,最近在网上看到一些文章对apply方法和call的一些示例,总算是看的有点眉目了,在这 ...

  8. Js apply()使用详解

    Js apply方法详解 我在一开始看到javascript的函数apply和call时,非常的模糊,看也看不懂,最近在网上看到一些文章对apply方法和call的一些示例,总算是看的有点眉目了,在这 ...

  9. Js apply方法详解,及其apply()方法的妙用

    Js apply方法详解 我在一开始看到javascript的函数apply和call时,非常的模糊,看也看不懂,最近在网上看到一些文章对apply方法和call的一些示例,总算是看的有点眉目了,在这 ...

  10. Vue.js 数据绑定语法详解

    Vue.js 数据绑定语法详解 一.总结 一句话总结:Vue.js 的模板是基于 DOM 实现的.这意味着所有的 Vue.js 模板都是可解析的有效的 HTML,且通过一些特殊的特性做了增强.Vue ...

随机推荐

  1. MySQL基础操作与数据类型

    目录 1.文件夹(库) 2.文件(表) 3.文件的一行内容 4.创建表的完整语法 5.整型类型 6.补充sql_mode 7.浮点型 8.字符类型 9.日期类型 10.枚举与集合类型 1.文件夹(库) ...

  2. Pod Hook

    Pod Hook kubernetes为容器提供了生命周期,称为Pod Hook,Pod Hook 是由kubelet 发起的, 可以发生在容器启动和停止之前运行,包含在容器的生命周期中.我们可以为所 ...

  3. Docker CMD ENTRYPOING 和Kubernetes command args对比

    Docker CMD ENTRYPOING 和Kubernetes command args对比 exec 模式 使用 exec 模式时,容器中的任务进程就是容器内的 1 号进程 shell 模式 使 ...

  4. Linux标准IO和管道

    Linux标准IO和管道 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.标准输入和输出 程序:指令+数据 读入数据:Input 输出数据:Output 打开的文件都有一个fd: ...

  5. Java精通并发-通过openjdk源码分析ObjectMonitor底层实现

    在我们分析synchronized关键字底层信息时,其中谈到了Monitor对象,它是由C++来实现的,那,到底它长啥样呢?我们在编写同步代码时完全木有看到该对象的存在,所以这次打算真正来瞅一下它的真 ...

  6. Nastya Hasn't Written a Legend(Codeforces Round #546 (Div. 2)E+线段树)

    题目链接 传送门 题面 题意 给你一个\(a\)数组和一个\(k\)数组,进行\(q\)次操作,操作分为两种: 将\(a_i\)增加\(x\),此时如果\(a_{i+1}<a_i+k_i\),那 ...

  7. Tulip Festival(线段树+二分+CDQ+带修改莫队+树套树)

    题目链接 传送门 线段树\(+\)二分思路 思路 比赛看到这题时感觉是一棵线段树\(+\)主席树,然后因为不会带修改主席树就放弃了,最后发现还卡了树套树. 由于本题数据保证序列中相同的数字不会超过20 ...

  8. Xms Xmx PermSize MaxPermSize的含义

    参数的含义 -vmargs -Xms128M -Xmx512M -XX:PermSize=64M -XX:MaxPermSize=128M -vmargs 说明后面是VM的参数,所以后面的其实都是JV ...

  9. Bagging and Random Forest

    Bagging和随机森林RF. 随机森林是最受欢迎和最强大的机器学习算法之一.它是一种称为Bootstrap Aggregation或bagging的集成机器学习算法. bootstrap是一种强大的 ...

  10. 洛谷 P1379 八数码难题 题解

    我个人感觉就是一道bfs的变形,还是对bfs掌握不好的人有一定难度. 本题思路: 大体上用bfs搜,用map来去重,在这里只需要一个队列,因为需要较少步数达到的状态一定在步数较多的状态之前入队列. # ...