这道题一定要写一下,卡了好久。

题意:

有黑白两种方格,最上边一行和最左边一列一定是黑色,然后其余的地方有可能是黑色,有可能是白色,和白色相邻的黑色方格里有数字(1个或2个),

现在要求在白色方格里填1~9中的一个数字,使得一个黑色方格下边的数字 = sigma(该黑色方格下边白色方格数字)  这个sigma不是下边全部的白方格,

而是一直往下走一直走到一个黑方格之前所有的白方格,详情见样例1。相同的,黑方格右上角的数字 = sigma(该黑色方格右边白色方格数字)。

思路:

可以很容易看出,所有白色方格按行相加 == 所有白色方格按列相加  也就是  所有黑色方格右上角数字和 == 所有黑色方格左下角数字和。那么符合网络流,

源点输入的流量==汇点汇入的流量。建立超级源点sp和超级汇点tp,然后进行以下设定:

type = 0,不带数字的黑色方格

type = 1,白色方格

type = 2,带有两个数字的黑色方格(这个要进行拆点,代码里会标记)

type = 3,只有左下角带数字的黑色方格

type = 4,只有右上角带数字的黑色方格

把黑色方格左下角作为源点,白色方格作为中间点,黑色方格右上角作为汇点。(也可以源点汇点交换一下,如下一行的括号)

接下来进行连边 sp -> type2.3 -> type1 -> type2.4 -> tp。(也可以sp -> type2.4 -> type1 -> type2.3 -> tp)

因为白方格要填1~9有下界1和上界9两个界线,不如让填的数减一,最后再加上,就变成了填0~8可以方便的进行最大流操作

sp -> type2.3连边时,边权为左下角的数减去下边白色方格数*1(因为都减1了)

type2.4 -> tp连边时,边权为右上角的数减去右边白色方格数*1

type2.3 -> type1 -> type2.4连边时,边权设为8

然后跑最大流,求答案

#include <bits/stdc++.h>
using namespace std; const int maxn = + ;
const int maxm = 1e6 + ;
const int inf = 0x3f3f3f3f;
int n, m, d[maxn*maxn], sp, tp, maxflow;
int head[maxn*maxn], tot;
struct point{
int top, lft, type;
} mp[maxn][maxn];
struct edge{
int to, w, next;
} ed[maxm];
int num[maxn][maxn], ans[maxn*maxn];
char s[];
inline void add( int u, int v, int w ){
ed[++tot].to = v; ed[tot].w = w; ed[tot].next = head[u]; head[u] = tot;
ed[++tot].to = u; ed[tot].w = ; ed[tot].next = head[v]; head[v] = tot;
} inline void init(){
memset( head, - ,sizeof(head) );
tot = ;
} inline void map_set(){
for( int i=; i<n; i++ )
for( int j=; j<m; j++ ){
int cnt = ;
if( mp[i][j].type== ){
for( int k=j+; k<m && mp[i][k].type==; k++ )
add( num[i][k], num[i][j], ), cnt ++;
add( num[i][j], tp, mp[i][j].top-cnt );
}else if( mp[i][j].type== ){
for( int k=j+; k<m && mp[i][k].type==; k++ )
add( num[i][k], num[i][j], ), cnt ++;
add( num[i][j], tp, mp[i][j].top-cnt );
cnt = ;
for( int k=i+; k<n && mp[k][j].type==; k++ )
add( num[i][j]-, num[k][j], ), cnt ++; //type==2时,让num[i][j]-1代表左下数字的点
add( sp, num[i][j]-, mp[i][j].lft-cnt );
}else if( mp[i][j].type== ){
for( int k=i+; k<n && mp[k][j].type==; k++ )
add( num[i][j], num[k][j], ), cnt ++;
add( sp, num[i][j], mp[i][j].lft-cnt );
}
}
} inline bool bfs(){
memset( d, , sizeof(d) );
queue<int> q;
d[sp] = ;
q.push(sp);
while( !q.empty() ){
int x = q.front();
q.pop();
for( int i=head[x]; i!=-; i=ed[i].next ){
int y = ed[i].to;
if( ed[i].w && !d[y] ){
d[y] = d[x] + ;
q.push(y);
if( y==tp ) return ;
}
}
}
return ;
} inline int min( int a, int b ){
return a<b ? a:b;
} inline int dfs( int x, int flow ){
if( x==tp ) return flow;
int rest = flow, k;
for( int i=head[x]; i!=- && rest; i=ed[i].next ){
int y = ed[i].to;
if( ed[i].w && d[y]==d[x]+ ){
k = dfs( y, min(rest, ed[i].w) );
if(!k) d[y] = ;
ed[i].w -= k;
ed[i^].w += k;
rest -= k;
}
}
return flow - rest;
} inline void dinic(){
int flow = maxflow = ;
while( bfs() ){
while( flow=dfs(sp, inf) ) maxflow += flow; //该题里 maxflow没什么用,可以不求
}
} inline void output(){
memset( ans, , sizeof(ans) ); //ans记录答案
for( int i=head[sp]; i!=-; i=ed[i].next ){ //超级源点sp是虚拟的,正好利用它进行遍历
int u = ed[i].to;
for( int j=head[u]; j!=-; j=ed[j].next )
ans[ed[j].to] = - ed[j].w + ; //最后要加回1(其实这里为什么要减去边权而不直接用边权我不是很懂,求dalao指教)
}
for( int i=; i<n; i++ ){
putchar('_');
for( int j=; j<m; j++ ){
if( mp[i][j].type!= ) printf(" _");
else printf("%2d", ans[num[i][j]]);
}
puts("");
}
} int main(){
// freopen("in.txt", "r", stdin);
while( ~scanf("%d%d", &n, &m) ){
init();
int nump = ;
for( int i=; i<n; i++ )
for( int j=; j<m; j++ ){
scanf("%s", s);
if( s[]=='.' ){
mp[i][j].type = ;
mp[i][j].top = mp[i][j].lft = ;
}else if( s[]=='X' ){
if( s[]=='X' ) mp[i][j].type = ;
else{
mp[i][j].type = ;
mp[i][j].lft = ;
mp[i][j].top = (s[]-'')* + (s[]-'')* + s[]-'';
}
}else{
if( s[]=='X' ){
mp[i][j].type = ;
mp[i][j].lft = (s[]-'')* + (s[]-'')* + s[]-'';
mp[i][j].top = ;
}else{
mp[i][j].type = ;
mp[i][j].lft = (s[]-'')* + (s[]-'')* + s[]-'';
mp[i][j].top = (s[]-'')* + (s[]-'')* + s[]-'';
}
}
if( mp[i][j].type== ) nump += ; //type == 2的时候就是上半部分和左半部分都有数字,那么将其拆点成两个点
else nump ++;
num[i][j] = nump; //将矩阵的二维编码转换成一维,便于进行操作
}
sp = ; tp = nump+;
map_set();
dinic();
output();
} return ;
}

HDU3338 Kakuro Extension(最大流+思维构图)的更多相关文章

  1. HDU3338 Kakuro Extension —— 最大流、方格填数类似数独

    题目链接:https://vjudge.net/problem/HDU-3338 Kakuro Extension Time Limit: 2000/1000 MS (Java/Others)     ...

  2. hdu3338 Kakuro Extension 最大流

    If you solved problem like this, forget it.Because you need to use a completely different algorithm ...

  3. HDU - 3338 Kakuro Extension (最大流求解方格填数)

    题意:给一个方格,每行每列都有对白色格子中的数之和的要求.每个格子中的数范围在[1,9]中.现在给出了这些要求,求满足条件的解. 分析:本题读入和建图比较恶心... 用网络流求解.建立源点S和汇点T, ...

  4. HDU3338:Kakuro Extension(最大流)

    Kakuro Extension Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  5. HDU 3338 Kakuro Extension (网络流,最大流)

    HDU 3338 Kakuro Extension (网络流,最大流) Description If you solved problem like this, forget it.Because y ...

  6. 【最大流】【HDU3338】【Kakuro Extension】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3338 题目大意:填数字,使白色区域的值得和等于有值得黑色区域的相对应的值,用网络流来做 题目思路:增加 ...

  7. Kakuro Extension【最大流】

    HDU-3338 这道题真的处理起来好复杂啊,题意就是个简单的方格填数问题,但是每个白点至少放1,那么最后的可能解是怎样的呢?我们是不是要把x轴上的和y轴上的统一起来,然后就是每个点都被对应的x和y匹 ...

  8. L - Kakuro Extension - HDU 3338 - (最大流)

    题意:有一个填数字的游戏,需要你为白色的块内填一些值,不过不能随意填的,是有一些规则的(废话),在空白的上方和作方给出一些值,如果左下角有值说明下面列的和等于这个值,右上角的值等于这行后面的数的和,如 ...

  9. poj 1149 PIGS(最大流经典构图)

    题目描述:迈克在一个养猪场工作,养猪场里有M 个猪圈,每个猪圈都上了锁.由于迈克没有钥匙,所以他不能打开任何一个猪圈.要买猪的顾客一个接一个来到养猪场,每个顾客有一些猪圈的钥匙,而且他们要买一定数量的 ...

随机推荐

  1. SQL数据同步到ELK(四)- 利用SQL SERVER Track Data相关功能同步数据(上)

    一.相关文档 老规矩,为了避免我的解释误导大家,请大家务必通过官网了解一波SQL SERVER的相关功能. 文档地址: 整体介绍文档:https://docs.microsoft.com/en-us/ ...

  2. linux 自动化安装系统 -KS文件

    # Kickstart file automatically generated by anaconda. installharddrive --partition=sdb2 --dir=lang e ...

  3. Azure容器监控部署(上)

    前两篇简单的介绍了一下prometheus的,本节原本是写node_exporter和cAdvisor的搭建,但网上教程很多,所以直接写整套环境的部署过程 一.架构 我们原来的系统架构是在AZURE上 ...

  4. 图论 --- BFS + MST

    Borg Maze Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7844   Accepted: 2623 Descrip ...

  5. stm32 普通IO口模拟串口通信

    普通IO口模拟串口通信 串口通信协议 串口传输 默认 波特率9600 1起始位 1停止位 其他0 数据位是8位(注意图上的给错了). 传输时,从起始位开始,从一个数据的低位(LSB)开始发送,如图从左 ...

  6. ML学习笔记之Anaconda中命令形式安装XGBoost(pip install)

    0x00 概述 在没有安装XGBoost之前,import xgboot会出错,如下: # ModuleNotFoundError: No module named ‘xgboost’ 0x01 安装 ...

  7. OpenStack 中 RabbitMQ 的使用

    OpenStack 中 RabbitMQ 的使用 本文是 OpenStack 中的 RabbitMQ 使用研究 两部分中的第一部分,将介绍 RabbitMQ 的基本概念,即 RabbitMQ 是什么. ...

  8. C#多线程的同步与通信

    C#中使用lock和Monitor控制多线程对资源的使用,最常见的生产者和消费者问题就是多线程同步和通信的经典例子.了解C#多线程的同步与通信. 一.关于lock和Monitor lock可以把一段代 ...

  9. pickle导入变量AttributeError的解决方案

    问题描述: AttributeError: 'module' object has no attribute ‘attr1’ 解决方案: # 找到报错的文件a.py from a import att ...

  10. 解决Spring Boot 从1.x升级到 2.x 后 单点登陆(SSO)问题

    解决Spring Boot 从1.x升级到 2.x 后 单点登陆(SSO)问题   在学习Spring Cloud 时,遇到了授权服务oauth 相关内容时,总是一知半解,因此决定先把Spring S ...