洛谷

题意:

给出两个最大团的补图,现在要求增加一条边,使得最大最大团个数增加至少\(1\)。

思路:

  • 我们求出团的补图,问题可以转换为:对于一个二分图,选择删掉一条边,能够增大其最大独立集的点集数。
  • 然后做法就是考虑在最大流的残余网络上,对容量为\(1\)的边求强连通分量(包含源点、汇点)。
  • 若存在一条边\((x,y)\)为匹配边,并且\(x,y\)在不同的强连通分量中,那么\((x,y)\)这条边为必经边,即最大匹配中包含这条边;若\((x,y)\)为非匹配边并且\(x,y\)在同一强连通分量中,那么\((x,y)\)为最大匹配的可行边,即这条边存在于至少一个最大匹配中。
  • 证明的话,就拿必经边来说,若\((x,y)\)在同一强连通分量中,我们去掉\(x,y\)这条边,还是有增广路径能从\(x\)到\(y\),此时最大匹配没变并且\((x,y)\)流量为\(0\)。所以\((x,y)\)不能在同一强连通分量中。

注意一开始要对图进行二分图染色。

代码如下:

#include <bits/stdc++.h>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#ifdef Local
#define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
void err() { std::cout << '\n'; }
template<typename T, typename...Args>
void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
#define dbg(...)
#endif
void pt() {std::cout << '\n'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 5e4 + 5, M = 1e6 + 5; #define INF 0x3f3f3f3f
template <class T>
struct Dinic{
struct Edge{
int v, next;
T flow;
Edge(){}
Edge(int v, int next, T flow) : v(v), next(next), flow(flow) {}
}e[M << 1];
int head[N], tot;
int dep[N];
void init() {
memset(head, -1, sizeof(head)); tot = 0;
}
void adde(int u, int v, T w, T rw = 0) {
e[tot] = Edge(v, head[u], w);
head[u] = tot++;
e[tot] = Edge(u, head[v], rw);
head[v] = tot++;
}
bool BFS(int _S, int _T) {
memset(dep, 0, sizeof(dep));
queue <int> q; q.push(_S); dep[_S] = 1;
while(!q.empty()) {
int u = q.front(); q.pop();
for(int i = head[u]; ~i; i = e[i].next) {
int v = e[i].v;
if(!dep[v] && e[i].flow > 0) {
dep[v] = dep[u] + 1;
q.push(v);
}
}
}
return dep[_T] != 0;
}
T dfs(int _S, int _T, T a) {
T flow = 0, f;
if(_S == _T || a == 0) return a;
for(int i = head[_S]; ~i; i = e[i].next) {
int v = e[i].v;
if(dep[v] != dep[_S] + 1) continue;
f = dfs(v, _T, min(a, e[i].flow));
if(f) {
e[i].flow -= f;
e[i ^ 1].flow += f;
flow += f;
a -= f;
if(a == 0) break;
}
}
if(!flow) dep[_S] = -1;
return flow;
}
T dinic(int _S, int _T) {
T max_flow = 0;
while(BFS(_S, _T)) max_flow += dfs(_S, _T, INF);
return max_flow;
}
stack <int> s;
int dfs_T, num;
int scc[N], dfn[N], low[N];
void Tarjan(int u){
dfn[u] = low[u] = ++dfs_T;
s.push(u);
for(int i = head[u]; i != -1;i = e[i].next){
int v = e[i].v;
if(e[i].flow == 0) continue;
if(!dfn[v]){
Tarjan(v);
low[u] = min(low[u], low[v]);
}else if(!scc[v]){
low[u] = min(low[u], dfn[v]);
}
}
if(low[u] == dfn[u]){
num++; int now;
do{
now = s.top(); s.pop();
scc[now] = num;
}while(!s.empty() && now!=u);
}
}
};
Dinic <int> solve; int n, m; vector <int> g[N];
int col[N];
void color(int u, int c) {
col[u] = c;
for(auto v : g[u]) {
if(!col[v]) color(v, 3 - c);
}
} void run() {
solve.init();
for(int i = 1; i <= m; i++) {
int u, v; cin >> u >> v;
g[u].push_back(v);
g[v].push_back(u);
}
for(int i = 1; i <= n; i++) {
if(!col[i]) color(i, 1);
}
int t = 2 * n + 1;
for(int i = 1; i <= n; i++) {
if(col[i] == 1) {
solve.adde(0, i, 1);
for(auto j : g[i]) {
solve.adde(i, j + n, 1);
}
} else {
solve.adde(i + n, t, 1);
}
}
int flow = solve.dinic(0, t);
dbg(flow);
for(int i = 0; i <= t; i++) {
if(!solve.dfn[i]) {
solve.Tarjan(i);
}
}
dbg(solve.num);
vector <pii> ans;
for(int u = 1; u <= n; u++) {
for(int i = solve.head[u]; i != -1; i = solve.e[i].next) {
int v = solve.e[i].v;
if(solve.e[i].flow == 1) continue;
if(v > n && solve.scc[u] != solve.scc[v]) {
int x = u, y = v - n;
if(x > y) swap(x, y);
ans.push_back(MP(x, y));
}
}
}
sort(all(ans), [&](pii A, pii B) {
if(A.fi == B.fi) return A.se < B.se;
return A.fi < B.fi;
});
pt(sz(ans));
for(auto it : ans) cout << it.fi << ' ' << it.se << '\n';
} int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(20);
#ifdef Local
freopen("../input.in", "r", stdin);
freopen("../output.out", "w", stdout);
#endif
while(cin >> n >> m) run();
return 0;
}

P3731 [HAOI2017]新型城市化(tarjan+网络流)的更多相关文章

  1. 【Luogu3731】[HAOI2017]新型城市化(网络流,Tarjan)

    [Luogu3731][HAOI2017]新型城市化(网络流,Tarjan) 题面 洛谷 给定一张反图,保证原图能分成不超过两个团,问有多少种加上一条边的方法,使得最大团的个数至少加上\(1\). 题 ...

  2. 洛谷 P3731 [HAOI2017]新型城市化【最大流(二分图匹配)+tarjan】

    我到底怎么建的图为啥要开这么大的数组啊?! 神题神题,本来以为图论出不出什么花来了. 首先要理解'团'的概念,简单来说就是无向图的一个完全子图,相关概念详见度娘. 所以关于团一般都是NP问题,只有二分 ...

  3. Luogu P3731 [HAOI2017]新型城市化

    题目显然可以转化为求每一条边对二分图最大独立集的贡献,二分图最大独立集\(=\)点数\(-\)最大匹配数,我们就有了\(50pts\)做法. 正解的做法是在原图上跑\(Tarjan\),最开始我想复杂 ...

  4. 求去掉一条边使最小割变小 HAOI2017 新型城市化

    先求最小割,然后对残量网络跑Tarjan.对于所有满流的边,若其两端点不在同一个SCC中,则这条边是满足条件的. 证明见 来源:HAOI2017 新型城市化

  5. LOJ2276 [HAOI2017] 新型城市化 【二分图匹配】【tarjan】

    题目分析: 这题出的好! 首先问题肯定是二分图的最大独立集,如果删去某条匹配边之后独立集是否会变大. 跑出最大流之后流满的边就是匹配边. 如果一个匹配边的两个端点在一个强连通分量里,那这条边删掉之后我 ...

  6. HAOI2017 新型城市化 二分图的最大独立集+最大流+强连通缩点

    题目链接(洛谷):https://www.luogu.org/problemnew/show/P3731 题意概述:给出一张二分图,询问删掉哪些边之后可以使这张二分图的最大独立集变大.N<=10 ...

  7. Luogu3731 HAOI2017新型城市化(二分图匹配+强连通分量)

    将未建立贸易关系看成连一条边,那么这显然是个二分图.最大城市群即最大独立集,也即n-最大匹配.现在要求的就是删哪些边会使最大匹配减少,也即求哪些边一定在最大匹配中. 首先范围有点大,当然是跑个dini ...

  8. [HAOI2017] 新型城市化

    给出的图中恰包含2个团,则图的补图为一个二分图,其最大独立集为原图的最大团. 我们知道,二分图的最大独立集=V-最小顶点覆盖,最小顶点覆盖=最大匹配. 问题转化为:计算删去后最大匹配减小的边集. 所以 ...

  9. 【题解】新型城市化 HAOI2017 网络流 二分图最大匹配 强连通分量

    Prelude 好,HAOI2017终于会做一道题了! 传送到洛谷:→_→ 传送到LOJ:←_← 本篇博客链接:(●'◡'●) Solution 首先要读懂题. 考场上我是这样想的QAQ. 我们把每个 ...

随机推荐

  1. 浅谈js的类数组对象arguments

    类数组对象:arguments总所周知,js是一门相当灵活的语言.当我们在js中在调用一个函数的时候,我们经常会给这个函数传递一些参数,js把传入到这个函数的全部参数存储在一个叫做arguments的 ...

  2. Apache(基于主机名)

    1.配置hosts文件 (1).hosts文件作用是定义IP地址与主机名的映射关系,即强制将某个主机名地址解析到指定的IP地址. (2)输入命令“vi /etc/hosts”,打开hosts文件,输入 ...

  3. LeetCode 676. Implement Magic Dictionary实现一个魔法字典 (C++/Java)

    题目: Implement a magic directory with buildDict, and search methods. For the method buildDict, you'll ...

  4. Python else

    Python else else 可以用来搭配其他语句完成条件判断 最常用的就是 if...else... 当然还有一些其他语句也可以配合 else 使用 if if...else... 是最简单的条 ...

  5. SSM配置动态数据源

    多数据源配置主要涉及自定义类(DataSource注解类.DataSourceAspect切面类,动态数据源接口实现类.以及数据源字符串线程保存类),pom.xml文件.applicationCont ...

  6. MySQL实战45讲学习笔记:第四十五讲

    一.本节概述 MySQL 里有很多自增的 id,每个自增 id 都是定义了初始值,然后不停地往上加步长.虽然自然数是没有上限的,但是在计算机里,只要定义了表示这个数的字节长度,那它就有上限.比如,无符 ...

  7. Python apply函数

    Python apply函数 1.介绍 apply函数是pandas里面所有函数中自由度最高的函数.该函数如下: DataFrame.apply(func, axis=0, broadcast=Fal ...

  8. Docker学习4-学会如何让容器开机自启服务

    前言 小龙亲测重启服务器后 docker 容器没跑起来,相信有不少小伙伴在用docker部署容器的时候也发现每次开机服务就没有自启了,需要手动去执行把容器服务开启起来,但有没有可以让它开机自启呢?显然 ...

  9. Oracle中TIMESTAMP时间的显示格式

    Oracle中的TIMESTAMP数据类型很多人用的都很少,所以即使最简单的一个查询返回的结果也会搞不清楚到底这个时间是什么时间点. 例如: 27-1月 -08 12.04.35.877000 上午 ...

  10. vue项目打包之后样式错乱问题,如何处理

    最近公司做的这个项目,要大量修改element里面的css样式,所以项目打包之后 会出现样式和本地开发的时候样式有很多不一样,原因可能是css加载顺序有问题,样式被覆改了. 所以在mian.js里面这 ...