题目描述

数据范围

\(1\leq N,K \leq 10^9\)

\(solution\)

集合S中每个元素互不影响,不妨依次考虑其中一个元素在三角形中的出现情况

问题转化为一个\(0/1\)的三角形\(\{A_{i,j}\}\),用\(0\)表示选了,\(1\)表示没选,那么如果\(A_{i,j}\)为\(1\),则\(A_{i,j}\)左边和上边都是\(1\)

考虑\(n\)比较小的情况,可以DP

\(f_i\)表示一个\(i*i\)的三角形的方案数

对于\(f_i\),第\(i\)行一定是一段\(1\)和一段\(0\)拼起来,枚举\(1\)的长度\(j\),前\(j\)列的元素都必须选\(1\),其他列除去第\(i\)行构成一个长为\((i-j-1)\)的三角形,填法为\(f_{i-j-1}\)种

最后加上是第\(i\)行全选\(1\)的情况,只有\(1\)种

\(f_i=1+\sum_{j=0}^{i-1}f_{i-j-1}=1+\sum_{j=0}^{i-1}f_j\)

\(f_0=1\)

不妨令\(S_i=\sum_{j=0}^if_j\)

原式\(f_i=1+S_{i-1}\)即\(S_{i-1}=f_i-1\)

则有

\(S_i-S_{i-1}=(f_{i+1}-1)-(f_i-1)\)

即 \(f_i=f_{i+1}-f_{i}\)

\(f_{i+1}=2*f_i\) 且\(f_0=1\)

得\(f_n=2^n\)

\(ans={f_n}^k=2^{nk}\)

#include<iostream>
#include<cstring>
#include<cstdio>
#define int long long
using namespace std; const int MOD=1000000007; int n,k; inline int qpow(int x,int k){
int s=1;
while(k){
if(k&1) s=s*x%MOD;
k>>=1;
x=x*x%MOD;
}
return s;
} signed main()
{
scanf("%lld%lld",&n,&k);
printf("%lld\n",qpow(2,n*k));
return 0;
}

【BZOJ4475】 [Jsoi2015]子集选取的更多相关文章

  1. BZOJ4475[Jsoi2015]子集选取——递推(结论题)

    题目描述 输入 输入包含一行两个整数N和K,1<=N,K<=10^9 输出 一行一个整数,表示不同方案数目模1,000,000,007的值. 样例输入 2 2 样例输出 16   可以发现 ...

  2. BZOJ4475 [Jsoi2015]子集选取

    Description 有一些\(\{1\dots n\}\)的子集\(A_{i,j}, 1\leq j\leq i\leq k\)共\(\frac{k(k+1)}2\)个,满足\(A_{i,j}\s ...

  3. BZOJ4475 JSOI2015子集选取(动态规划)

    数据范围过大说明这个题和组合一点关系也没有,答案基本上肯定是ab的形式了.暴力打表感觉不太好写,找到当年的题面发现还有个样例是6 40 401898087,于是暴力找ab=401898087的数,发现 ...

  4. BZOJ4475: [Jsoi2015]子集选取【找规律】【数学】

    Description Input 输入包含一行两个整数N和K,1<=N,K<=10^9 Output 一行一个整数,表示不同方案数目模1,000,000,007的值. Sample In ...

  5. [BZOJ4475][JSOI2015]子集选取[推导]

    题意 题目链接 分析 显然可以看成一个位数为 \(n\) 的二进制数然后每一位分开考虑然后求和.最后的答案是 \(w^n\) 的形式. 考虑一个dp. 定义状态 \(f_{i}\) 表示选择了长度为 ...

  6. 【BZOJ4475】子集选取(计数)

    题意: 思路: #include<cstdio> #include<cstdlib> #include<iostream> #include<algorith ...

  7. [题解] LuoguP6075 [JSOI2015]子集选取

    传送门 ps: 下面\(n\)和\(k\)好像和题目里的写反了...将就着看吧\(qwq\) 暴力打个表答案就出来了? 先写个结论,答案就是\(2^{nk}\). 为啥呢? 首先你需要知道,因为一个集 ...

  8. bzoj 4475: [Jsoi2015]子集选取

    233,扒题解的时候偷瞄到这个题的题解了,,GG 暴力发现是2^(nm),然后就是sb题了 #include <bits/stdc++.h> #define LL long long us ...

  9. 洛谷 P6075 [JSOI2015]子集选取

    链接:P6075 前言: 虽然其他大佬们的走分界线的方法比我巧妙多了,但还是提供一种思路. 题意: %&¥--@#直接看题面理解罢. 分析过程: 看到这样的题面我脑里第一反应就是DP,但是看到 ...

随机推荐

  1. windows 10 如何设定计划任务自动执行 python 脚本?

    我用 python 写了一些脚本,有一些是爬虫脚本,比如爬取知乎特定话题的热门问题,有一些是定期的统计分析脚本,输出统计结果到文档中.之前我都是手动执行这些脚本,现在我希望如何这些脚本能自动定时执行. ...

  2. C# vb .net实现邮戳效果滤镜

    在.net中,如何简单快捷地实现Photoshop滤镜组中的邮戳效果呢?答案是调用SharpImage!专业图像特效滤镜和合成类库.下面开始演示关键代码,您也可以在文末下载全部源码: 设置授权 第一步 ...

  3. 自己使用的jquery公用common.js

    /*解决ie8中js数组没有indexOf方法*/ jQuery.extend({ exportResport : function(url, method, params){ var paramCo ...

  4. Ubuntu中安装(升级)GraphicsMagick

    1 前言 采用官方下载安装包然后强制安装升级Ubuntu中有的老版本gmagick-1.3.28,升级到gmagick-1.3.31 仅用来记录使用. 2.准备工作 1.下载安装包 https://s ...

  5. Django模板语言的学习

    1.模板系统 1.语法 1.变量相关 {{ name}} ,{{ name|length}}, {{ name |default:"默认值"}} 2.逻辑相关 1.if判断 {% ...

  6. 【转载】C#中int.TryParse方法和int.Parse方法的异同之处

    在C#编程过程中,int.TryParse方法和int.Parse方法都可以将字符串string转换为整型int类型,但两者还是有区别,最重要的区别在于int.TryParse方法在字符串无法转换为i ...

  7. python day 15: IO多路复用,socketserver源码培析,

    目录 python day 15 1. IO多路复用 2. socketserver源码分析 python day 15 2019/10/20 学习资料来自老男孩教育 1. IO多路复用 ''' I/ ...

  8. Hybris产品主数据的价格折扣维护

    登录Hybris backoffice的产品管理界面,进入price标签页,点击Create new Discount Row按钮: 在Discount下拉地段里选择10%的折扣,这个产品原来的单价是 ...

  9. vue-cli 移动端项目如何在手机上调试预览

    这里分享下如何在webpack工具构建下的vue项目,在手机端调试和预览,言归正传. 1.电脑和手机连接到同一个WIFI a.台式电脑和手机同时链接一个路由器,使用同一个wifi: b.笔记本也可以直 ...

  10. django数据表生成

    在创建的app中models.py生成表结构 class 表名(models.Model): #表名一般首字母大写 中突出信息的大写 列名=models.Charfield(max_lenth=) # ...