垃圾回收是 Python 自带的机制,用于自动释放不会再用到的内存空间;

什么是内存泄漏呢?

  • 内存泄漏,并不是说你的内存出现了信息安全问题,被恶意程序利用了,而是指程序本身没有设计好,导致程序未能释放已不再使用的内存。
  • 内存泄漏也不是指你的内存在物理上消失了,而是意味着代码在分配了某段内存后,因为设计错误,失去了对这段内存的控制,从而造成了内存的浪费。

计数引用

  Python 中一切皆对象。当这个对象的引用计数(指针数)为 0 的时候,说明这个对象永不可达,自然它也就成为了垃圾,需要被回收。

  例:

# 显示当前 python 程序占用的内存大小
def show_memory_info(hint):
pid = os.getpid()
p = psutil.Process(pid) info = p.memory_full_info()
memory = info.uss / 1024. / 1024
print('{} memory used: {} MB'.format(hint, memory))
def func():
show_memory_info('initial')
a = [i for i in range(10000000)]
show_memory_info('after a created') func()
show_memory_info('finished') ########## 输出 ##########
# initial memory used: 6.62890625 MB
# after a created memory used: 199.33203125 MB
# finished memory used: 7.6640625 MB

  程序初始化时占的内存为6MB,接着创建了一个列表a,由于a还没被回收,因此占的内存升到了200MB,当函数返回后,a的引用计数为0,a被回收,内存又恢复到了7MB。

  如果把a变成全局变量,函数返回后,引用计数依然大于0,于是对象就不会被垃圾回收,依然占着大量的内存

def func():
show_memory_info('initial')
global a
a = [i for i in range(10000000)]
show_memory_info('after a created') func()
show_memory_info('finished') ########## 输出 ########## # initial memory used: 6.67578125 MB
# after a created memory used: 199.30859375 MB
# finished memory used: 199.30859375 MB

  或者把列表返回,在主程序中接收,引用依然存在,垃圾回收就不会被触发,大量内存仍然被占用着

def func():
show_memory_info('initial')
a = [i for i in range(10000000)]
show_memory_info('after a created')
return a a = func()
show_memory_info('finished') ########## 输出 ########## # initial memory used: 6.6484375 MB
# after a created memory used: 199.2890625 MB
# finished memory used: 199.2890625 MB

  看一下 Python 内部的引用计数机制

import sys

a = []

# 两次引用,一次来自 a,一次来自 getrefcount
print(sys.getrefcount(a)) def func(a):
# 四次引用,a,python 的函数调用栈,函数参数,和 getrefcount
print(sys.getrefcount(a)) func(a) # 两次引用,一次来自 a,一次来自 getrefcount,函数 func 调用已经不存在
print(sys.getrefcount(a)) ########## 输出 ########## 2
4
2

  sys.getrefcount() 这个函数,可以查看一个变量的引用次数。这段代码本身应该很好理解,不过别忘了,getrefcount 本身也会引入一次计数。另一个要注意的是,在函数调用发生的时候,会产生额外的两次引用,一次来自函数栈,另一个是函数参数。

  又如:

import sys

a = []

print(sys.getrefcount(a)) # 两次

b = a

print(sys.getrefcount(a)) # 三次

c = b
d = b
e = c
f = e
g = d print(sys.getrefcount(a)) # 八次 ########## 输出 ########## 2
3
8

  a、b、c、d、e、f、g 这些变量全部指代的是同一个对象,而 sys.getrefcount() 函数并不是统计一个指针,而是要统计一个对象被引用的次数,所以最后一共会有八次引用。

  手动释放内存,应该怎么做呢? 方法同样很简单。只需要先调用 del a 来删除一个对象;然后强制调用 gc.collect(),即可手动启动垃圾回收。

import gc
import os
import psutil
# 显示当前 python 程序占用的内存大小
def show_memory_info(hint):
pid = os.getpid()
p = psutil.Process(pid) info = p.memory_full_info()
memory = info.uss / 1024. / 1024
print('{} memory used: {} MB'.format(hint, memory)) show_memory_info('initial') a = [i for i in range(10000000)] show_memory_info('after a created') del a
gc.collect() show_memory_info('finish')
print(a) initial memory used: 6.54296875 MB
after a created memory used: 199.17578125 MB
finish memory used: 7.26171875 MB
Traceback (most recent call last):
File "Coroutine.py", line 24, in <module>
print(a)
NameError: name 'a' is not defined

循环引用

  观察代码:

def func():
show_memory_info('initial')
a = [i for i in range(10000000)]
b = [i for i in range(10000000)]
show_memory_info('after a, b created')
a.append(b)
b.append(a) func()
show_memory_info('finished') ########## 输出 ##########

initial memory used: 6.625 MB
  after a, b created memory used: 392.08984375 MB
  finished memory used: 392.08984375 MB

  这里,a 和 b 互相引用,并且,作为局部变量,在函数 func 调用结束后,a 和 b 这两个指针从程序意义上已经不存在了。但是,很明显,依然有内存占用!为什么呢?因为互相引用,导致它们的引用数都不为 0。

  处理这种情况,可以调用显式调用 gc.collect() ,来启动垃圾回收。

  Python 使用标记清除(mark-sweep)算法和分代收集(generational),来启用针对循环引用的自动垃圾回收。

调试内存泄漏

  objgraph,一个非常好用的可视化引用关系的包.

  安装:

pip install graphviz
pip install xdot
pip install objgraph

  windows的话要除了装以上库还要在官网https://graphviz.gitlab.io/_pages/Download/Download_windows.html下载,然后设置环境变量 Path增加C:\Program Files (x86)\Graphviz2.38\bin,在CMD输入dot -version验证。

  通过下面这段代码和生成的引用调用图,你能非常直观地发现,有两个 list 互相引用,说明这里极有可能引起内存泄露。

import objgraph

a = [1, 2, 3]
b = [4, 5, 6] a.append(b)
b.append(a) objgraph.show_refs([a])

     

  注:在windows中可能会提示:

Graph written to C:\Users\Public\Documents\Wondershare\CreatorTemp\objgraph-wwcqiie_.dot (8 nodes)
Image renderer (dot) not found, not doing anything else

  这时只要在打开dot文件所在的路径,然后CMD中执行

 dot .\objgraph-yclwfpzr.dot -Tpng -o image.png

  就可以生成文件。

  另一个非常有用的函数,是 show_backrefs()。以下是调用show_backrefs()生成的图片。

  

参考

  极客时间《Python核心技术与实战》专栏

Python进阶:程序界的垃圾分类回收的更多相关文章

  1. 【python进阶】Garbage collection垃圾回收2

    前言 在上一篇文章[python进阶]Garbage collection垃圾回收1,我们讲述了Garbage collection(GC垃圾回收),画说Ruby与Python垃圾回收,Python中 ...

  2. 【python进阶】Garbage collection垃圾回收1

    前言 GC垃圾回收在python中是很重要的一部分,同样我将分两次去讲解Garbage collection垃圾回收,此篇为Garbage collection垃圾回收第一篇,下面开始今天的说明~~~ ...

  3. python进阶(7)垃圾回收机制

    Python垃圾回收 基于C语言源码底层,让你真正了解垃圾回收机制的实现 引用计数器 标记清除 分代回收 缓存机制 Python的C源码(3.8.2版本) 1.引用计数器 1.1环状双向链表 refc ...

  4. Python进阶 - 对象,名字以及绑定

    Python进阶 - 对象,名字以及绑定 1.一切皆对象 Python哲学: Python中一切皆对象 1.1 数据模型-对象,值以及类型 对象是Python对数据的抽象.Python程序中所有的数据 ...

  5. python进阶篇

    python进阶篇 import 导入模块 sys.path:获取指定模块搜索路径的字符串集合,可以将写好的模块放在得到的某个路径下,就可以在程序中import时正确找到. ​ import sys ...

  6. Python进阶(三十五)-Fiddler命令行和HTTP断点调试

    Python进阶(三十五)-Fiddler命令行和HTTP断点调试 一. Fiddler内置命令   上一节(使用Fiddler进行抓包分析)中,介绍到,在web session(与我们通常所说的se ...

  7. python进阶02 特殊方法与特殊属性

    python进阶02 特殊方法与特殊属性 一.初始化.析构 1.初始化 # python中有很多双下划线开头且以下划线结尾的固定方法,它们会在特定的时机被触发执行,这便是特殊方法 # 在实例化的时候就 ...

  8. Python进阶----线程基础,开启线程的方式(类和函数),线程VS进程,线程的方法,守护线程,详解互斥锁,递归锁,信号量

    Python进阶----线程基础,开启线程的方式(类和函数),线程VS进程,线程的方法,守护线程,详解互斥锁,递归锁,信号量 一丶线程的理论知识 什么是线程:    1.线程是一堆指令,是操作系统调度 ...

  9. Python进阶----进程间数据隔离, join阻塞等待, 进程属性, 僵尸进程和孤儿进程, 守护进程

    Python进阶----进程间数据隔离, join阻塞等待, 进程属性, 僵尸进程和孤儿进程, 守护进程 一丶获取进程以及父进程的pid 含义:    进程在内存中开启多个,操作系统如何区分这些进程, ...

随机推荐

  1. IntelliJ IDEA 查找两个字符之间任意内容正则表达式

    表达式: A.*?B(“.“表示任意字符,“?”表示匹配0个或多个)

  2. ASP.net MVC C# 当前上下文中不存在名称"viewbag"

    出现的错误如下: 错误 2 当前上下文中不存在名称“model” e:\Stuff\projects\蓝狐软件工作室\src\Lanhu.Admin\Views\Student\Index.cshtm ...

  3. navicat设置唯一

    https://blog.csdn.net/Song_JiangTao/article/details/82192189

  4. 通过HttpServletRequest重写+filter 添加header

    问题说明 需要做的事情比较简单,就是通过filter 重写httpservletrequest ,同时给予request 添加header 主要是通过HttpServletRequestWrapper ...

  5. pyqt5 + pyinstaller 制作爬虫小程序

    环境:mac python3.7 pyqt5 pyinstaller ps: 主要是熟悉pyqt5, 加入了单选框 输入框 文本框 文件夹选择框及日历下拉框 效果图: pyqt5 主程序文件 # -* ...

  6. ubuntu编译PCRE时出现 line 81: aclocal-1.14: command not found错误

    WARNING: 'aclocal-1.14' is missing on your system. You should only need it if you modified 'acinclud ...

  7. 【04NOIP普及组】火星人(信息学奥赛一本通 1929)(洛谷 1088)

    [题目描述] 人类终于登上了火星的土地并且见到了神秘的火星人.人类和火星人都无法理解对方的语言,但是我们的科学家发明了一种用数字交流的方法.这种交流方法是这样的,首先,火星人把一个非常大的数字告诉人类 ...

  8. 百度编辑器(ueditor)踩坑,图片转存无法使用

    在使用 百度编辑器 的过程中碰到了一些问题,图片转存功能无法使用, 即便是疯狂地在官方 Demo.文档.论坛甚至是 GitHub 上也没找到理想的答案.(┗|`O′|┛) (真是日了狗) 问题描述 默 ...

  9. 各种系统性能优化技术,采用vilocity实现商品页面静态化

    1.大型门户网站系统:>10万的访问量   行业网站(当当网,卓越网):20万-30万,一个小时内会跟数据库的交互至少20万-30万,会产生数据库瓶颈,每个数据库都有一个最大连接数(socket ...

  10. 从零开始搭建实验室Ubuntu服务器 | 深度学习工作站

    一个标准的数据分析码农必须要配一台超薄笔记本和一台高性能服务器,笔记本是日常使用,各种小问题的解决,同时也是用于远程连接终端服务器:高性能服务器就是核心的处理数据的平台,CPU.内存.硬盘容量.GPU ...