Python进阶:程序界的垃圾分类回收
垃圾回收是 Python 自带的机制,用于自动释放不会再用到的内存空间;
什么是内存泄漏呢?
- 内存泄漏,并不是说你的内存出现了信息安全问题,被恶意程序利用了,而是指程序本身没有设计好,导致程序未能释放已不再使用的内存。
- 内存泄漏也不是指你的内存在物理上消失了,而是意味着代码在分配了某段内存后,因为设计错误,失去了对这段内存的控制,从而造成了内存的浪费。
计数引用
Python 中一切皆对象。当这个对象的引用计数(指针数)为 0 的时候,说明这个对象永不可达,自然它也就成为了垃圾,需要被回收。
例:
# 显示当前 python 程序占用的内存大小
def show_memory_info(hint):
pid = os.getpid()
p = psutil.Process(pid) info = p.memory_full_info()
memory = info.uss / 1024. / 1024
print('{} memory used: {} MB'.format(hint, memory))
def func():
show_memory_info('initial')
a = [i for i in range(10000000)]
show_memory_info('after a created') func()
show_memory_info('finished') ########## 输出 ##########
程序初始化时占的内存为6MB,接着创建了一个列表a,由于a还没被回收,因此占的内存升到了200MB,当函数返回后,a的引用计数为0,a被回收,内存又恢复到了7MB。
如果把a变成全局变量,函数返回后,引用计数依然大于0,于是对象就不会被垃圾回收,依然占着大量的内存
def func():
show_memory_info('initial')
global a
a = [i for i in range(10000000)]
show_memory_info('after a created') func()
show_memory_info('finished') ########## 输出 ########## # initial memory used: 6.67578125 MB
# after a created memory used: 199.30859375 MB
# finished memory used: 199.30859375 MB
或者把列表返回,在主程序中接收,引用依然存在,垃圾回收就不会被触发,大量内存仍然被占用着
def func():
show_memory_info('initial')
a = [i for i in range(10000000)]
show_memory_info('after a created')
return a a = func()
show_memory_info('finished') ########## 输出 ########## # initial memory used: 6.6484375 MB
# after a created memory used: 199.2890625 MB
# finished memory used: 199.2890625 MB
看一下 Python 内部的引用计数机制
import sys a = [] # 两次引用,一次来自 a,一次来自 getrefcount
print(sys.getrefcount(a)) def func(a):
# 四次引用,a,python 的函数调用栈,函数参数,和 getrefcount
print(sys.getrefcount(a)) func(a) # 两次引用,一次来自 a,一次来自 getrefcount,函数 func 调用已经不存在
print(sys.getrefcount(a)) ########## 输出 ########## 2
4
2
sys.getrefcount() 这个函数,可以查看一个变量的引用次数。这段代码本身应该很好理解,不过别忘了,getrefcount 本身也会引入一次计数。另一个要注意的是,在函数调用发生的时候,会产生额外的两次引用,一次来自函数栈,另一个是函数参数。
又如:
import sys a = [] print(sys.getrefcount(a)) # 两次 b = a print(sys.getrefcount(a)) # 三次 c = b
d = b
e = c
f = e
g = d print(sys.getrefcount(a)) # 八次 ########## 输出 ########## 2
3
8
a、b、c、d、e、f、g 这些变量全部指代的是同一个对象,而 sys.getrefcount() 函数并不是统计一个指针,而是要统计一个对象被引用的次数,所以最后一共会有八次引用。
手动释放内存,应该怎么做呢? 方法同样很简单。只需要先调用 del a 来删除一个对象;然后强制调用 gc.collect(),即可手动启动垃圾回收。
import gc
import os
import psutil
# 显示当前 python 程序占用的内存大小
def show_memory_info(hint):
pid = os.getpid()
p = psutil.Process(pid) info = p.memory_full_info()
memory = info.uss / 1024. / 1024
print('{} memory used: {} MB'.format(hint, memory)) show_memory_info('initial') a = [i for i in range(10000000)] show_memory_info('after a created') del a
gc.collect() show_memory_info('finish')
print(a) initial memory used: 6.54296875 MB
after a created memory used: 199.17578125 MB
finish memory used: 7.26171875 MB
Traceback (most recent call last):
File "Coroutine.py", line 24, in <module>
print(a)
NameError: name 'a' is not defined
循环引用
观察代码:
def func():
show_memory_info('initial')
a = [i for i in range(10000000)]
b = [i for i in range(10000000)]
show_memory_info('after a, b created')
a.append(b)
b.append(a) func()
show_memory_info('finished') ########## 输出 ##########
initial memory used: 6.625 MB
after a, b created memory used: 392.08984375 MB
finished memory used: 392.08984375 MB
这里,a 和 b 互相引用,并且,作为局部变量,在函数 func 调用结束后,a 和 b 这两个指针从程序意义上已经不存在了。但是,很明显,依然有内存占用!为什么呢?因为互相引用,导致它们的引用数都不为 0。
处理这种情况,可以调用显式调用 gc.collect() ,来启动垃圾回收。
Python 使用标记清除(mark-sweep)算法和分代收集(generational),来启用针对循环引用的自动垃圾回收。
调试内存泄漏
objgraph,一个非常好用的可视化引用关系的包.
安装:
pip install graphviz
pip install xdot
pip install objgraph
windows的话要除了装以上库还要在官网https://graphviz.gitlab.io/_pages/Download/Download_windows.html下载,然后设置环境变量 Path增加C:\Program Files (x86)\Graphviz2.38\bin,在CMD输入dot -version验证。
通过下面这段代码和生成的引用调用图,你能非常直观地发现,有两个 list 互相引用,说明这里极有可能引起内存泄露。
import objgraph a = [1, 2, 3]
b = [4, 5, 6] a.append(b)
b.append(a) objgraph.show_refs([a])

注:在windows中可能会提示:
Graph written to C:\Users\Public\Documents\Wondershare\CreatorTemp\objgraph-wwcqiie_.dot (8 nodes)
Image renderer (dot) not found, not doing anything else
这时只要在打开dot文件所在的路径,然后CMD中执行
dot .\objgraph-yclwfpzr.dot -Tpng -o image.png
就可以生成文件。
另一个非常有用的函数,是 show_backrefs()。以下是调用show_backrefs()生成的图片。

参考
极客时间《Python核心技术与实战》专栏
Python进阶:程序界的垃圾分类回收的更多相关文章
- 【python进阶】Garbage collection垃圾回收2
前言 在上一篇文章[python进阶]Garbage collection垃圾回收1,我们讲述了Garbage collection(GC垃圾回收),画说Ruby与Python垃圾回收,Python中 ...
- 【python进阶】Garbage collection垃圾回收1
前言 GC垃圾回收在python中是很重要的一部分,同样我将分两次去讲解Garbage collection垃圾回收,此篇为Garbage collection垃圾回收第一篇,下面开始今天的说明~~~ ...
- python进阶(7)垃圾回收机制
Python垃圾回收 基于C语言源码底层,让你真正了解垃圾回收机制的实现 引用计数器 标记清除 分代回收 缓存机制 Python的C源码(3.8.2版本) 1.引用计数器 1.1环状双向链表 refc ...
- Python进阶 - 对象,名字以及绑定
Python进阶 - 对象,名字以及绑定 1.一切皆对象 Python哲学: Python中一切皆对象 1.1 数据模型-对象,值以及类型 对象是Python对数据的抽象.Python程序中所有的数据 ...
- python进阶篇
python进阶篇 import 导入模块 sys.path:获取指定模块搜索路径的字符串集合,可以将写好的模块放在得到的某个路径下,就可以在程序中import时正确找到. import sys ...
- Python进阶(三十五)-Fiddler命令行和HTTP断点调试
Python进阶(三十五)-Fiddler命令行和HTTP断点调试 一. Fiddler内置命令 上一节(使用Fiddler进行抓包分析)中,介绍到,在web session(与我们通常所说的se ...
- python进阶02 特殊方法与特殊属性
python进阶02 特殊方法与特殊属性 一.初始化.析构 1.初始化 # python中有很多双下划线开头且以下划线结尾的固定方法,它们会在特定的时机被触发执行,这便是特殊方法 # 在实例化的时候就 ...
- Python进阶----线程基础,开启线程的方式(类和函数),线程VS进程,线程的方法,守护线程,详解互斥锁,递归锁,信号量
Python进阶----线程基础,开启线程的方式(类和函数),线程VS进程,线程的方法,守护线程,详解互斥锁,递归锁,信号量 一丶线程的理论知识 什么是线程: 1.线程是一堆指令,是操作系统调度 ...
- Python进阶----进程间数据隔离, join阻塞等待, 进程属性, 僵尸进程和孤儿进程, 守护进程
Python进阶----进程间数据隔离, join阻塞等待, 进程属性, 僵尸进程和孤儿进程, 守护进程 一丶获取进程以及父进程的pid 含义: 进程在内存中开启多个,操作系统如何区分这些进程, ...
随机推荐
- WinDbg常用命令系列---内存查看d*
d*命令显示给定范围内的内存内容. d{a|b|c|d|D|f|p|q|u|w|W} [Options] [Range] dy{b|d} [Options] [Range] d [Options] [ ...
- HAProxy 2.0 and Beyond
转自:https://www.haproxy.com/blog/haproxy-2-0-and-beyond/ 关于haproxy 2.0 的新特性说明 HAProxy Technologies i ...
- SVN 常用 查看日志
1.日志查看,有时候会遇到查看一下之前改过的代码,或者恢复某某某个版本,这时就需要用到SVN的查看日志功能了,如图 2.日志列表,这里能看到各个版本的所有信息,包含了版本号 提交人 提交时间 提交时所 ...
- Codevs 3322 时空跳跃者的困境(组合数 二项式定理)
3322 时空跳跃者的困境 时间限制: 1 s 空间限制: 64000 KB 题目等级 : 钻石 Diamond 题目描述 Description 背景:收集完能量的圣殿战士suntian开始了他的追 ...
- kafka 创建消费者报错
kafka-console-consumer.sh --zookeeper master:2181,slave1:2181,slave2:2181 --topic test --from-beginn ...
- manjaro arm在rock pi4b中的配置记录:
首先说明下我的硬件情况,网上买了: 主要有emmc的转接板,主要是写入emmc镜像使用,32G的emmc,打算安装个android用来看电子书够了.需要自备读卡器,资料太少了,么有说明,考虑了1个多小 ...
- ICEM-哑铃(无厚度)
原视频下载地址:https://pan.baidu.com/s/1i44hdkh 密码: 96dh
- SDN初体验(软件定义网络实验一)
作业说明 本次实验步骤2.3是在机房环境下完成的,步骤1.4是在自己笔记本上重新配置完成的,所以环境.用户名什么的会略有差别. 1. 安装轻量级网络仿真工具Mininet 为了节约课程时间,实验室机房 ...
- Java-Maven(十二):idea多项目:common module进行compiler和install正常,运行domain-perf module提示:Could not resolve dependencies for project
前提: product项目下有三个module,分别是: driver module domain-perf module common module 问题: driver 和 domain-perf ...
- JVM探究之 —— Java内存区域
1. 概述 对于从事C.C++程序开发的开发人员来说,在内存管理领域,他们既是拥有最高权力的“皇帝”又是从事最基础工作的“劳动人民”——既拥有每一个对象的“所有权”,又担负着每一个对象生命开始到终结的 ...