LOJ3120 CTS2019 珍珠 生成函数、二项式反演、NTT
题目大意:给出一个长度为\(n\)的序列\(a_i\),序列中每一个数可以取\(1\)到\(D\)中的所有数。问共有多少个序列满足:设\(p_i\)表示第\(i\)个数在序列中出现的次数,\(\sum\limits_{i=1}^D \lfloor \frac{p_i}{2} \rfloor \geq m\)。\(D \leq 10^5 , 0 \leq m \leq n \leq 10^9\)
在有生之年切掉laofu的多项式题,全场唯一一个写多项式求逆的,其他人都直接卷积,然后发现自己的做法其实并不需要多项式求逆……
首先上面的条件等价于:\(\sum\limits_{i=1}^D [2 \not\mid p_i] \leq n - 2m\)。那么一种想法是求出强制其中\(n - 2m + 1\)个数字出现次数为奇数,其他的数出现次数为偶数。那么这样的方案数是\(\binom{D}{n - 2m + 1} [x^n](\frac{e^x - e^{-x}}{2})^{n - 2m + 1} (\frac{e^x + e^{-x}}{2})^{D - (n - 2m + 1)}\),非常难算。不妨考虑容斥计算。
先做几个特判:\(n < 2m\)时答案为\(0\);\(D < n - 2m + 1\)时答案为\(D^n\)。
不妨设\(f_i\)表示强制其中\(i\)个数字出现次数为奇数,其他的数出现次数随意的方案数,那么\(f_i = \binom{D}{i} [x^n](\frac{e^x - e^{-x}}{2})^{i} e^{(D - i)x}\),经过化简可以得到\(f_i = i! \binom{D}{i} \frac{1}{2^i} \sum\limits_{j=0}^i \frac{(-1)^j (D - 2j)^n}{(i-j)!j!}\)。不难发现后面是一个卷积形式,使用\(NTT\)在\(O(DlogD)\)的时间复杂度内可以求出所有的\(f_i\)。
然后又设\(g_i\)表示恰好\(i\)个数字出现奇数次的方案数,就和HAOI2018 染色一样用NTT加速二项式反演即可。
最后答案就是\(\sum\limits_{i=0}^{n - 2m} g_i\)。
LOJ3120 CTS2019 珍珠 生成函数、二项式反演、NTT的更多相关文章
- Codeforces 923E - Perpetual Subtraction(微积分+生成函数+推式子+二项式反演+NTT)
Codeforces 题目传送门 & 洛谷题目传送门 神仙题 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 首先考虑最朴素的 \(dp\),设 \(dp_{z,i}\) 表示经 ...
- BZOJ 5306: [Haoi2018]染色 二项式反演+NTT
给定长度为 $n$ 的序列, 每个位置都可以被染成 $m$ 种颜色中的某一种. 如果恰好出现了 $s$ 次的颜色有 $k$ 种, 则会产生 $w_{k}$ 的价值. 求对于所有可能的染色方案,获得价值 ...
- 【CTS2019】珍珠【生成函数,二项式反演】
题目链接:洛谷 pb大佬说这是sb题感觉好像有点过fan...(我还是太弱了) 首先,设$i$这个数在序列中出现$a_i$次,要求$\sum_{i=1}^D[a_i \ mod \ 2]\leq n- ...
- 洛谷 P5401 - [CTS2019]珍珠(NTT+二项式反演)
题面传送门 一道多项式的 hot tea 首先考虑将题目的限制翻译成人话,我们记 \(c_i\) 为 \(i\) 的出现次数,那么题目的限制等价于 \(\sum\limits_{i=1}^D\lflo ...
- [CTS2019]珍珠——二项式反演
[CTS2019]珍珠 考虑实际上,统计多少种染色方案,使得出现次数为奇数的颜色数<=n-2*m 其实看起来很像生成函数了 n很大?感觉生成函数会比较整齐,考虑生成函数能否把n放到数值的位置,而 ...
- 【题解】CTS2019珍珠(二项式反演+卷积)
[题解]CTS2019珍珠 题目就是要满足这样一个条件\(c_i\)代表出现次数 \[ \sum {[\dfrac {c_i } 2]} \ge 2m \] 显然\(\sum c_i=n\)所以,而且 ...
- 【题解】[HAOI2018]染色(NTT+容斥/二项式反演)
[题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\d ...
- LOJ3119 CTS2019 随机立方体 概率、容斥、二项式反演
传送门 为了方便我们设\(N\)是\(N,M,L\)中的最小值,某一个位置\((x,y,z)\)所控制的位置为集合\(\{(a,b,c) \mid a = x \text{或} b = y \text ...
- [LOJ3119][CTS2019|CTSC2019]随机立方体:组合数学+二项式反演
分析 感觉这道题的计数方法好厉害.. 一个直观的思路是,把题目转化为求至少有\(k\)个极大的数的概率. 考虑这样一个事实,如果钦定\((1,1,1),(2,2,2),...,(k,k,k)\)是那\ ...
随机推荐
- linux命令之------Linux文档编辑
1.Vi和vim三种模式 (1)命令模式:移动光标 (2)插入模式:编辑文档 (3)末行模式:保存退出 不同模式操作示意图: 其中wq是保存退出,wq!强制保存退出:q不保存退出:q!强制不保存退出. ...
- 关于 Mercury_Lc 说明
现在还主要在用 csdn 写博客,博客地址:https://blog.csdn.net/Mercury_Lc 这个是因为好奇,点了一下 一键搬家 ,就酱紫了. 主要更新,前往这个网址 https:// ...
- jmap -heap 查看堆内存
概述 用jmap -heap命令可以查看linux堆内存分布 具体用法 1:先查出tomcat的进程号 例如: 然后执行 jmap -heap 7095 可以打印出整体的堆信息 可以看到经过分配的 ...
- 【大数据应用技术】作业十一|分布式并行计算MapReduce
本次作业在要求来自:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE2/homework/3319 1.用自己的话阐明Hadoop平台上HDFS和MapRe ...
- 软件工程--团队项目选择与NABCD
目录 Part1:项目说明 项目基础 我们的目标 Part2:项目NABCD Need Approach Benefit Competitors Delivery & Data Deliver ...
- Python中为什么没有++和–(自增/减)(转)
原文地址:http://blog.csdn.net/guang09080908/article/details/47273775(侵删) 这两天看了一些网上各大互联网公司的面试题,发现腾讯特别喜欢考察 ...
- java String 转Json报错 java.lang.NoClassDefFoundError: org/apache/commons/lang/exception/NestableRuntim
这个问题就是缺少jar包依赖!!! java.lang.NoClassDefFoundError: org/apache/commons/beanutils/DynaBean 缺少commons-be ...
- http各类型请求方法工具总结
本文为博主原创,未经允许不得转载: 在项目中会用到各种类型的http请求,包含put,get,post,delete,formData等各种请求方式,在这里总结一下 用过比较好的请求工具,使用serv ...
- 微信小程序开发——使用第三方插件生成二维码
需求场景: 小程序中指定页面需要根据列表数据生成多张二维码. 实现方案: 鉴于需要生成多张二维码,可以将生成二维码的功能封装到组件中,直接在页面列表循环中调用就好了.也可以给组件添加slot,在页面调 ...
- vue-qriously 生成二维码并下载、cliploard复制粘贴
xxx.vue <template> <a-modal class="dialogRecharge" title="活动链接及二维码" v-m ...