大意: $n$个骑士, 第$i$个骑士若加入光明阵营, 那么能力值$L_i$, 加入黑暗阵营, 能力值$D_i$. 给定$m$个限制$(u_i,v_i)$, 表示$u_i,v_i$不能在同一阵营. 求一种划分方案, 使得能力值最大值减最小值最小.

对于一个连通块, 如果不是二分图, 那么无解. 否则的话这个连通块最大值最小值只有两种情况, 枚举最大值, 求出最小值的最大可能值更新答案即可.

#include <iostream>
#include <sstream>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <cstring>
#include <bitset>
#include <functional>
#include <random>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define PER(i,a,n) for(int i=n;i>=a;--i)
#define hr putchar(10)
#define pb push_back
#define lc (o<<1)
#define rc (lc|1)
#define mid ((l+r)>>1)
#define ls lc,l,mid
#define rs rc,mid+1,r
#define x first
#define y second
#define io std::ios::sync_with_stdio(false)
#define endl '\n'
#define DB(a) ({REP(__i,1,n) cout<<a[__i]<<',';hr;})
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int P = 1e9+7, INF = 0x3f3f3f3f;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
//head const int N = 1e6+50;
int n,m,ok,vis[N],l[N],d[N],mi[N],ID[N],cur[N];
vector<int> g[N];
pii f[N],A,B; void dfs(int x, int c) {
vis[x] = c;
if (c) {
A.x = min(A.x,l[x]);
A.y = max(A.y,l[x]);
B.x = min(B.x,d[x]);
B.y = max(B.y,d[x]);
}
else {
A.x = min(A.x,d[x]);
A.y = max(A.y,d[x]);
B.x = min(B.x,l[x]);
B.y = max(B.y,l[x]);
}
for (int y:g[x]) {
if (vis[y]<0) dfs(y,c^1);
else if (vis[y]==c) ok=0;
}
} void work() {
scanf("%d%d",&n,&m);
REP(i,1,n) vis[i]=-1,g[i].clear();
REP(i,1,m) {
int u, v;
scanf("%d%d",&u,&v);
g[u].pb(v),g[v].pb(u);
}
REP(i,1,n) scanf("%d%d",l+i,d+i);
ok = 1;
vector<pii> events;
int cnt = 0;
multiset<int> s;
REP(i,1,n) if (vis[i]<0) {
A = B = {1e9,0};
dfs(i, 0);
if (!ok) return puts("IMPOSSIBLE"),void();
s.insert(cur[i]=-INF);
ID[cnt]=i,mi[cnt]=A.x,events.pb(pii(A.y,cnt)),++cnt;
ID[cnt]=i,mi[cnt]=B.x,events.pb(pii(B.y,cnt)),++cnt;
}
sort(events.begin(),events.end());
int ans = 1e9;
for (auto &p:events) {
s.erase(s.find(cur[ID[p.y]]));
cur[ID[p.y]] = max(cur[ID[p.y]], mi[p.y]);
s.insert(cur[ID[p.y]]);
ans = min(ans, p.x-*s.begin());
}
printf("%d\n", ans);
} int main() {
int t=rd();
REP(i,1,t) {
printf("Case %d: ",i);
work();
}
}

Gym 102055B Balance of the Force的更多相关文章

  1. 2018CCPCFINAL B Balance of the Force 枚举最大值

    题意 n个人能选择黑暗面和光明面,选择两个面分别能获得\(L_i\)和\(R_i\)的力量,有m对人不能选择同一面,问n个人的力量中的最大值-最小值尽可能小为多少. \(1<=n<=2\t ...

  2. 模拟赛小结:2018 China Collegiate Programming Contest Final (CCPC-Final 2018)

    比赛链接:传送门 跌跌撞撞6题摸银. 封榜后两题,把手上的题做完了还算舒服.就是罚时有点高. 开出了一道奇奇怪怪的题(K),然后ccpcf银应该比区域赛银要难吧,反正很开心qwq. Problem A ...

  3. martini-能量最小化参数(mdp文件)

    1 ; 2 ; STANDARD MD INPUT OPTIONS FOR MARTINI 2.x 3 ; Updated 02 feb 2013 by DdJ 4 ; 5 ; for use wit ...

  4. martini-md参数(mdp文件)

    输入参数:一个典型的mdp文件 1 ; 2 ; STANDARD MD INPUT OPTIONS FOR MARTINI 2.x 3 ; Updated 02 feb 2013 by DdJ 4 ; ...

  5. 每日英语:Boost Your Balance; Avoid Falls

    If you find yourself needing to sit down to take off your shoes, it might be time to start paying at ...

  6. 强化学习之MountainCarContinuous(注册自己的gym环境)

    目录 1. 问题概述 2. 环境 2.1 Observation & state 2.2 Actions 2.3 Reward 2.4 初始状态 2.5 终止状态- Episode Termi ...

  7. ACM: Gym 101047M Removing coins in Kem Kadrãn - 暴力

     Gym 101047M Removing coins in Kem Kadrãn Time Limit:2000MS     Memory Limit:65536KB     64bit IO Fo ...

  8. ACM: Gym 101047K Training with Phuket's larvae - 思维题

     Gym 101047K Training with Phuket's larvae Time Limit:2000MS     Memory Limit:65536KB     64bit IO F ...

  9. ACM: Gym 101047E Escape from Ayutthaya - BFS

    Gym 101047E Escape from Ayutthaya Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I6 ...

随机推荐

  1. MongoDB---如何避免插入重复数据(pymongo)

    以下摘自pymongo文档: update_one(filter, update, upsert=False) update_many(filter, update, upsert=False) fi ...

  2. centos7中运行ifconfig提示-bash: ifconfig: command not found

    centos7中运行ifconfig提示-bash: ifconfig: command not found 查看/sbin/下是否有ifconfig,若没有通过如下命令安装 sudo yum ins ...

  3. MySQL免安装配置步骤

    此方式为直接解压压缩包安装MySQL 1.下载相关压缩包 官网下载地址:https://dev.mysql.com/downloads/mysql/ 下载后将压缩包解压至自己想要的文件路径即可 2.新 ...

  4. RUN vs CMD vs ENTRYPOINT

    参考:https://www.ibm.com/developerworks/community/blogs/132cfa78-44b0-4376-85d0-d3096cd30d3f/entry/RUN ...

  5. Java实现批量将word文档转换成PDF

    先导入words的jar包 需要jar包的私聊我发你 代码如下:import com.aspose.words.Document;import java.io.File; public class W ...

  6. 日期正则表达式yyyyMMdd

    日期校验yyyyMMdd, 包括闰月等校验. package com.xgcd; import java.util.regex.Matcher; import java.util.regex.Patt ...

  7. Java基础 switch 简单示例

        JDK :OpenJDK-11      OS :CentOS 7.6.1810      IDE :Eclipse 2019‑03 typesetting :Markdown   code ...

  8. Java12新特性 -- JVM 常量 API

    Java 12 中引入 JVM 常量 API,用来更容易地对关键类文件 (key class-file) 和运行时构件(artefact)的名义描述 (nominal description) 进行建 ...

  9. spring boot集成mybatis分页插件

    mybatis的分页插件能省事,本章记录的是 spring boot整合mybatis分页插件. 1.引入依赖 <!-- 分页插件pagehelper --> <dependency ...

  10. 【449】backup get weekly tweets

    import pandas as pd from datetime import datetime fn = r"D:\OneDrive - UNSW\tweets_flu.csv" ...