题目链接:洛谷

\[
Ans=\frac{1}{k}(\sum_{i=0}^n\binom{n}{i}p^ii-\sum_{i=0}^n\binom{n}{i}p^i(i \ \mathrm{mod} \ k))
\]

\[
\begin{aligned}
Ans&=\sum_{i=0}^n\binom{n}{i}p^i(i \ \mathrm{mod} \ k) \\
&=\sum_{d=0}^{k-1}\sum_{i=0}^n\binom{n}{i}p^id((i-d) \ \mathrm{mod} \ k=0) \\
&=\frac{1}{k}\sum_{d=0}^{k-1}\sum_{i=0}^n\binom{n}{i}p^id\sum_{j=0}^{k-1}w_k^{(i-d)j} \\
&=\frac{1}{k}\sum_{d=0}^{k-1}d\sum_{j=0}^{k-1}w_k^{-dj}\sum_{i=0}^n\binom{n}{i}(pw_k^{j})^i \\
&=\frac{1}{k}\sum_{d=0}^{k-1}d\sum_{j=0}^{k-1}w_k^{-dj}(pw_k^j+1)^n \\
&=\frac{1}{k}\sum_{i=0}^{k-1}(pw_k^i+1)^n\sum_{d=0}^{k-1}d(w_k^{-i})^d
\end{aligned}
\]

现在推推后面一部分。
\[
\begin{aligned}
S&=\sum_{i=0}^{k-1}ix^i \\
&=\sum_{i=0}^{k-1}(i+1)x^{i+1}-kx^k \\
&=x\sum_{i=0}^{k-1}ix^i+\sum_{i=0}^{k-1}x^i-kx^k \\
&=xS+\frac{1-x^k}{1-x}-kx^k \\
(1-x)S&=\frac{1-x^k}{1-x}-kx^k \\
\because x^k&=1\\
S&=\frac{k}{1-x} \\
Ans&=\frac{(p+1)^n(k-1)}{2}+\sum_{i=1}^{k-1}\frac{(pw_k^i+1)^n}{1-w_k^{-i}}
\end{aligned}
\]

还有一部分
\[
\begin{aligned}
Ans&=\sum_{i=0}^n\binom{n}{i}p^ii \\
&=np\sum_{i=0}^{n-1}\binom{n-1}{i}p^i \\
&=np(p+1)^{n-1}
\end{aligned}
\]

Luogu5591 小猪佩奇学数学 【单位根反演】的更多相关文章

  1. P5591 小猪佩奇学数学

    P5591 小猪佩奇学数学 知识点 二项式定理 \[(x+1)^n=\sum_{i=0}^n\binom nix^i \] 单位根反演 \[[n\mid k]=\frac 1n\sum_{i=0}^{ ...

  2. P5591-小猪佩奇学数学【单位根反演】

    正题 题目链接:https://www.luogu.com.cn/problem/P5591 题目大意 给出\(n,p,k\)求 \[\left(\sum_{i=0}^n\binom{n}{i}p^i ...

  3. loj 6485 LJJ学二项式定理 —— 单位根反演

    题目:https://loj.ac/problem/6485 先把 \( a_{i mod 4} \) 处理掉,其实就是 \( \sum\limits_{i=0}^{3} a_{i} \sum\lim ...

  4. [LOJ 6485]LJJ学二项式定理(单位根反演)

    也许更好的阅读体验 \(\mathcal{Description}\) 原题链接 \(T\)组询问,每次给\(n,s,a_0,a_1,a_2,a_3\)求 \(\begin{aligned}\left ...

  5. LOJ 6485 LJJ 学二项式定理——单位根反演

    题目:https://loj.ac/problem/6485 \( \sum\limits_{k=0}^{3}\sum\limits_{i=0}^{n}C_{n}^{i}s^{i}a_{k}[4|(i ...

  6. loj #6485. LJJ 学二项式定理 单位根反演

    新学的黑科技,感觉好nb ~ #include <bits/stdc++.h> #define ll long long #define setIO(s) freopen(s". ...

  7. 数学杂烩总结(多项式/形式幂级数+FWT+特征多项式+生成函数+斯特林数+二次剩余+单位根反演+置换群)

    数学杂烩总结(多项式/形式幂级数+FWT+特征多项式+生成函数+斯特林数+二次剩余+单位根反演+置换群) 因为不会做目录所以请善用ctrl+F 本来想的是笔记之类的,写着写着就变成了资源整理 一些有的 ...

  8. 【LOJ#6485】LJJ 学二项式定理(单位根反演)

    [LOJ#6485]LJJ 学二项式定理(单位根反演) 题面 LOJ 题解 显然对于\(a0,a1,a2,a3\)分开算答案. 这里以\(a0\)为例 \[\begin{aligned} Ans&am ...

  9. loj#6485. LJJ 学二项式定理(单位根反演)

    题面 传送门 题解 首先你要知道一个叫做单位根反演的东西 \[{1\over k}\sum_{i=0}^{k-1}\omega^{in}_k=[k|n]\] 直接用等比数列求和就可以证明了 而且在模\ ...

随机推荐

  1. lnmp环境快速搭建及原理解析

    刚开始学习php的时候是在wamp环境下开发的,后来才接触到 lnmp 环境当时安装lnmp是按照一大长篇文档一步步的编译安装,当时是真不知道是在做什么啊!脑袋一片空白~~,只知道按照那么长的一篇文档 ...

  2. 【转载】Javascript使用Math.floor方法向下取整

    在Javascript的数值运算中,很多时候需要对最后计算结果向下取整,Math.floor是javascript中对计算结果向下取整的函数,它总是将数值向下舍入为最接近的整数.此外Math.ceil ...

  3. JavaScript_day02

    10.随机数 随机数一般和数组组合使用. 生成随机数:使用Math.random()函数,生成的随机数0-1.一般乘以10^n扩大随机数范围. Math.round()函数和parseInt()函数. ...

  4. vue-cli3 一直运行 /sockjs-node/info

    首先 sockjs-node 是一个JavaScript库,提供跨浏览器JavaScript的API,创建了一个低延迟.全双工的浏览器和web服务器之间通信通道. 服务端:sockjs-node(ht ...

  5. excel2016打开为空白界面解决办法

    前言 excel2016打开文件为空白的界面,明显不正常. 解决方法 https://blog.csdn.net/b2345012/article/details/94134401 以上.

  6. git stash 缓存本地修改 简介

    当我们在使用git的时候,又是会有这种情况:当新的需求了的时候.我们需要为此需求新建一个分支,再次分支上进行修改,当经过测试,提交代码时,在将其合并到主分支,或生产分支上. 但是有时候也有失误的时候, ...

  7. stdClass 标准

    在WordPress中很多地方使用stdClass来定义一个对象(而通常是用数组的方式),然后使用get_object_vars来把定义的对象『转换』成数组. 如下代码所示: $tanteng = n ...

  8. golang读写文件的几种方式

    golang中处理文件有很多种方式,下面我们来看看. (1)使用os模块 先来看看如何查看文件属性 package main import ( "fmt" "os&quo ...

  9. 专心学LINUX:CentOS关闭屏幕自动锁定和睡眠

    在VMware中学习CentOS总免不了一直测试.调试,加上看书.刨坛,再转回到CentOS界面时已经被锁定了.看看怎么将这定时锁定取消以免麻烦.虽然可以使用字符终端,但字符终端不便于翻看前面已经发出 ...

  10. Qt命名规范

    1) 类名:单词首字母大写,单词和单词之间直接连接,无需连接字符 如: MyClass,QPushButton class MainWindow { }; 2) 函数名字,变量名:第二个单词开始(不是 ...