Luogu5591 小猪佩奇学数学 【单位根反演】
题目链接:洛谷
\[
Ans=\frac{1}{k}(\sum_{i=0}^n\binom{n}{i}p^ii-\sum_{i=0}^n\binom{n}{i}p^i(i \ \mathrm{mod} \ k))
\]
\[
\begin{aligned}
Ans&=\sum_{i=0}^n\binom{n}{i}p^i(i \ \mathrm{mod} \ k) \\
&=\sum_{d=0}^{k-1}\sum_{i=0}^n\binom{n}{i}p^id((i-d) \ \mathrm{mod} \ k=0) \\
&=\frac{1}{k}\sum_{d=0}^{k-1}\sum_{i=0}^n\binom{n}{i}p^id\sum_{j=0}^{k-1}w_k^{(i-d)j} \\
&=\frac{1}{k}\sum_{d=0}^{k-1}d\sum_{j=0}^{k-1}w_k^{-dj}\sum_{i=0}^n\binom{n}{i}(pw_k^{j})^i \\
&=\frac{1}{k}\sum_{d=0}^{k-1}d\sum_{j=0}^{k-1}w_k^{-dj}(pw_k^j+1)^n \\
&=\frac{1}{k}\sum_{i=0}^{k-1}(pw_k^i+1)^n\sum_{d=0}^{k-1}d(w_k^{-i})^d
\end{aligned}
\]
现在推推后面一部分。
\[
\begin{aligned}
S&=\sum_{i=0}^{k-1}ix^i \\
&=\sum_{i=0}^{k-1}(i+1)x^{i+1}-kx^k \\
&=x\sum_{i=0}^{k-1}ix^i+\sum_{i=0}^{k-1}x^i-kx^k \\
&=xS+\frac{1-x^k}{1-x}-kx^k \\
(1-x)S&=\frac{1-x^k}{1-x}-kx^k \\
\because x^k&=1\\
S&=\frac{k}{1-x} \\
Ans&=\frac{(p+1)^n(k-1)}{2}+\sum_{i=1}^{k-1}\frac{(pw_k^i+1)^n}{1-w_k^{-i}}
\end{aligned}
\]
还有一部分
\[
\begin{aligned}
Ans&=\sum_{i=0}^n\binom{n}{i}p^ii \\
&=np\sum_{i=0}^{n-1}\binom{n-1}{i}p^i \\
&=np(p+1)^{n-1}
\end{aligned}
\]
Luogu5591 小猪佩奇学数学 【单位根反演】的更多相关文章
- P5591 小猪佩奇学数学
P5591 小猪佩奇学数学 知识点 二项式定理 \[(x+1)^n=\sum_{i=0}^n\binom nix^i \] 单位根反演 \[[n\mid k]=\frac 1n\sum_{i=0}^{ ...
- P5591-小猪佩奇学数学【单位根反演】
正题 题目链接:https://www.luogu.com.cn/problem/P5591 题目大意 给出\(n,p,k\)求 \[\left(\sum_{i=0}^n\binom{n}{i}p^i ...
- loj 6485 LJJ学二项式定理 —— 单位根反演
题目:https://loj.ac/problem/6485 先把 \( a_{i mod 4} \) 处理掉,其实就是 \( \sum\limits_{i=0}^{3} a_{i} \sum\lim ...
- [LOJ 6485]LJJ学二项式定理(单位根反演)
也许更好的阅读体验 \(\mathcal{Description}\) 原题链接 \(T\)组询问,每次给\(n,s,a_0,a_1,a_2,a_3\)求 \(\begin{aligned}\left ...
- LOJ 6485 LJJ 学二项式定理——单位根反演
题目:https://loj.ac/problem/6485 \( \sum\limits_{k=0}^{3}\sum\limits_{i=0}^{n}C_{n}^{i}s^{i}a_{k}[4|(i ...
- loj #6485. LJJ 学二项式定理 单位根反演
新学的黑科技,感觉好nb ~ #include <bits/stdc++.h> #define ll long long #define setIO(s) freopen(s". ...
- 数学杂烩总结(多项式/形式幂级数+FWT+特征多项式+生成函数+斯特林数+二次剩余+单位根反演+置换群)
数学杂烩总结(多项式/形式幂级数+FWT+特征多项式+生成函数+斯特林数+二次剩余+单位根反演+置换群) 因为不会做目录所以请善用ctrl+F 本来想的是笔记之类的,写着写着就变成了资源整理 一些有的 ...
- 【LOJ#6485】LJJ 学二项式定理(单位根反演)
[LOJ#6485]LJJ 学二项式定理(单位根反演) 题面 LOJ 题解 显然对于\(a0,a1,a2,a3\)分开算答案. 这里以\(a0\)为例 \[\begin{aligned} Ans&am ...
- loj#6485. LJJ 学二项式定理(单位根反演)
题面 传送门 题解 首先你要知道一个叫做单位根反演的东西 \[{1\over k}\sum_{i=0}^{k-1}\omega^{in}_k=[k|n]\] 直接用等比数列求和就可以证明了 而且在模\ ...
随机推荐
- 深入理解JVM(五) -- 垃圾回收算法
上篇文章我们了解到哪些内存区域和哪些对象可以被回收,这篇文章我们就来了解一下具体的垃圾回收算法的思路,不讨论具体的实现. 一 最基础算法 标记-清除(Mark-Swap) 为什么说他是最基础的算法,因 ...
- Matlab函数装饰器
info.m function result_func= info(msg) function res_func =wrap(func) function varargout = inner_wrap ...
- img中alt和title属性的区别
在图像标签img中,除了常用的宽度width和高度height属性之外,还有两个比较重要并且也会用到的属性,就是alt和title,这都是用来显示图片内容的具体信息的,但是这两个属性也有不同的地方.a ...
- SQL*Plus 格式化查询结果
为了在 SQL*Plus 环境中生成符合用户需要规范的报表,SQL*Plus 工具提供了多个用于格式化查询结果的命令,使用这些命令可以实现设置列的标题.定义输出值的显示格式和显示宽度.为报表增加头标题 ...
- 逆向常见加密算法值BlowFish算法
伪c代码简单记录 伪c代码实现BlowFish加密 sub_4012F0(&v22, &v5, &v6); ^ | do { v7 = *v6 ^ v3; v3 = v4 ^ ...
- Androidx初尝及其新旧包对照表
x的最低实验条件 AndroidStudio 3.2.0+ gradle:gradle-4.6以上 本次实验条件: AndroidStudio 3.3 (强制要求最低gradle版本为gradle-4 ...
- springBoot集成Redis,RedisTmple操作redis和注解实现添加和清空缓存功能
配置 maven项目进入相关配置 <dependency> <groupId>org.springframework.boot</groupId> &l ...
- Python学习日记(十三) 递归函数和二分查找算法
什么是递归函数? 简单来说就是在一个函数中重复的调用自己本身的函数 递归函数在调用的时候会不断的开内存的空间直到程序结束或递归到一个次数时会报错 计算可递归次数: i = 0 def func(): ...
- Centos7机器信息查看
1.查看Linux信息 1.1查看32位或64位 uname -a 1.2查看内核版本 cat /proc/version 1.3查看发行版 cat /etc/centos-release 2.查看内 ...
- linux网卡名称修改
vim /etc/sysconfig/grub ,在倒数第二行添加如下代码 net.ifnames=0 biosdevname=0 GRUB_TIMEOUT=5 GRUB_DISTRIBUTOR=&q ...