SCAN命令可以为用户保证:从完整遍历开始直到完整遍历结束期间,一直存在于数据集内的所有元素都会被完整遍历返回,但是同一个元素可能会被返回多次。如果一个元素是在迭代过程中被添加到数据集的,又或者是在迭代过程中从数据集中被删除的,那么这个元素可能会被返回,也可能不会返回。

这是如何实现的呢,先从Redis中的字典dict开始。Redis的数据库是使用dict作为底层实现的。

字典数据类型

Redis中的字典由dict.h/dict结构表示:

typedef struct dict {
dictType *type;
void *privdata;
dictht ht[2];
long rehashidx; /* rehashing not in progress if rehashidx == -1 */
unsigned long iterators; /* number of iterators currently running */
} dict; typedef struct dictht {
dictEntry **table;
unsigned long size;
unsigned long sizemask;
unsigned long used;
} dictht;

字典由两个哈希表dictht构成,主要用做rehash,平常主要使用ht[0]哈希表。

哈希表由一个成员为dictEntry的数组构成,size属性记录了数组的大小,used属性记录了已有节点的数量,sizemask属性的值等于size - 1。数组大小一般是2n,所以sizemask二进制是0b11111...,主要用作掩码,和哈希值一起决定key应该放在数组的哪个位置。

求key在数组中的索引的计算方法如下:

index = hash & d->ht[table].sizemask; 

也就是根据掩码求低位值。

rehash的问题

字典rehash时会使用两个哈希表,首先为ht[1]分配空间,如果是扩展操作,ht[1]的大小为第一个大于等于2倍ht[0].used的2n,如果是收缩操作,ht[1]的大小为第一个大于等于ht[0].used的2n。然后将ht[0]的所有键值对rehash到ht[1]中,最后释放ht[0],将ht[1]设置为ht[0],新创建一个空白哈希表当做ht[1]。rehash不是一次完成的,而是分多次、渐进式地完成。

举个例子,现在将一个size为4的哈希表ht[0](sizemask为11, index = hash & 0b11)rehash至一个size为8的哈希表ht[1](sizemask为111, index = hash & 0b111)。

ht[0]中处于bucket0位置的key的哈希值低两位为00,那么rehash至ht[1]时index取低三位可能为000(0)100(4)。也就是ht[0]中bucket0中的元素rehash之后分散于ht[1]的bucket0与bucket4,以此类推,对应关系为:

    ht[0]  ->  ht[1]
----------------
0 -> 0,4
1 -> 1,5
2 -> 2,6
3 -> 3,7

如果SCAN命令采取0->1->2->3的顺序进行遍历,就会出现如下问题:

  • 扩展操作中,如果返回游标1时正在进行rehash,ht[0]中的bucket0中的部分数据可能已经rehash到ht[1]中的bucket[0]或者bucket[4],在ht[1]中从bucket1开始遍历,遍历至bucket4时,其中的元素已经在ht[0]中的bucket0中遍历过,这就产生了重复问题。
  • 缩小操作中,当返回游标5,但缩小后哈希表的size只有4,如何重置游标?

SCAN的遍历顺序

SCAN命令的遍历顺序,可以举一个例子看一下:

127.0.0.1:6379[3]> keys *
1) "bar"
2) "qux"
3) "baz"
4) "foo"
127.0.0.1:6379[3]> scan 0 count 1
1) "2"
2) 1) "bar"
127.0.0.1:6379[3]> scan 2 count 1
1) "1"
2) 1) "foo"
127.0.0.1:6379[3]> scan 1 count 1
1) "3"
2) 1) "qux"
2) "baz"
127.0.0.1:6379[3]> scan 3 count 1
1) "0"
2) (empty list or set)

可以看出顺序是0->2->1->3,很难看出规律,转换成二进制观察一下:

00 -> 10 -> 01 -> 11

二进制就很明了了,遍历采用的顺序也是加法,但每次是高位加1的,也就是从左往右相加、从高到低进位的。

SCAN源码

SCAN遍历字典的源码在dict.c/dictScan,分两种情况,字典不在进行rehash或者正在进行rehash。

不在进行rehash时,游标是这样计算的:

m0 = t0->sizemask;

// 将游标的umask位的bit都置为1
v |= ~m0; // 反转游标
v = rev(v);
// 反转后+1,达到高位加1的效果
v++;
// 再次反转复位
v = rev(v);

当size为4时,sizemask为3(00000011),游标计算过程:

         v |= ~m0    v = rev(v)    v++       v = rev(v)

00000000(0) -> 11111100 -> 00111111 -> 01000000 -> 00000010(2)

00000010(2) -> 11111110 -> 01111111 -> 10000000 -> 00000001(1)

00000001(1) -> 11111101 -> 10111111 -> 11000000 -> 00000011(3)

00000011(3) -> 11111111 -> 11111111 -> 00000000 -> 00000000(0)

遍历size为4时的游标状态转移为0->2->1->3

同理,size为8时的游标状态转移为0->4->2->6->1->5->3->7,也就是000->100->010->110->001->101->011->111

再结合前面的rehash:

    ht[0]  ->  ht[1]
----------------
0 -> 0,4
1 -> 1,5
2 -> 2,6
3 -> 3,7

可以看出,当size由小变大时,所有原来的游标都能在大的哈希表中找到相应的位置,并且顺序一致,不会重复读取并且不会遗漏。

当size由大变小的情况,假设size由8变为了4,分两种情况,一种是游标为0,2,1,3中的一种,此时继续读取,也不会遗漏和重复。

但如果游标返回的不是这四种,例如返回了7,7&11之后变为了3,所以会从size为4的哈希表的bucket3开始继续遍历,而bucket3包含了size为8的哈希表中的bucket3与bucket7,所以会造成重复读取size为8的哈希表中的bucket3的情况。

所以,redis里rehash从小到大时,SCAN命令不会重复也不会遗漏。而从大到小时,有可能会造成重复但不会遗漏。

当正在进行rehash时,游标计算过程:

        /* Make sure t0 is the smaller and t1 is the bigger table */
if (t0->size > t1->size) {
t0 = &d->ht[1];
t1 = &d->ht[0];
} m0 = t0->sizemask;
m1 = t1->sizemask; /* Emit entries at cursor */
if (bucketfn) bucketfn(privdata, &t0->table[v & m0]);
de = t0->table[v & m0];
while (de) {
next = de->next;
fn(privdata, de);
de = next;
} /* Iterate over indices in larger table that are the expansion
* of the index pointed to by the cursor in the smaller table */
do {
/* Emit entries at cursor */
if (bucketfn) bucketfn(privdata, &t1->table[v & m1]);
de = t1->table[v & m1];
while (de) {
next = de->next;
fn(privdata, de);
de = next;
} /* Increment the reverse cursor not covered by the smaller mask.*/
v |= ~m1;
v = rev(v);
v++;
v = rev(v); /* Continue while bits covered by mask difference is non-zero */
} while (v & (m0 ^ m1));

算法会保证t0是较小的哈希表,不是的话t0与t1互换,先遍历t0中游标所在的bucket,然后再遍历较大的t1。

求下一个游标的过程基本相同,只是把m0换成了rehash之后的哈希表的m1,同时还加了一个判断条件:

v & (m0 ^ m1)

size4的m0为00000011,size8的m1为00000111m0 ^ m1取值为00000100,即取二者mask的不同位,看游标在这些标志位是否为1。

假设游标返回了2,并且正在进行rehash,此时size由4变成了8,二者mask的不同位是低第三位。

首先遍历t0中的bucket2,然后遍历t1中的bucket2,公式计算出的下一个游标为6(00000110),低第三位为1,继续循环,遍历t1中的bucket6,然后计算游标为1,结束循环。

所以正在rehash时,是两个哈希表都遍历的,以避免遗漏的情况。

Redis SCAN命令实现有限保证的原理的更多相关文章

  1. Redis Scan命令

    原地址:https://www.cnblogs.com/tekkaman/p/4887293.html [Redis Scan命令] SCAN cursor [MATCH pattern] [COUN ...

  2. redis scan 命令指南

    redis scan 命令指南 1. 模糊查询键值 redis 中模糊查询key有 keys,scan等,一下是一些具体用法. -- 命令用法:keys [pattern] keys name* -- ...

  3. redis scan命令使用

      以前的项目中有用到redis的keys命令来获取某些key,知道看了这篇文章 https://mp.weixin.qq.com/s/SGOyGGfA6GOzxwD5S91hLw.安全起见,这次打算 ...

  4. Redis中的Scan命令踩坑记

    1 原本以为自己对redis命令还蛮熟悉的,各种数据模型各种基于redis的骚操作.但是最近在使用redis的scan的命令式却踩了一个坑,顿时发觉自己原来对redis的游标理解的很有限.所以记录下这 ...

  5. 用redis的scan命令代替keys命令,以及在spring-data-redis中遇到的问题

    摘要 本文主要是介绍使用redis scan命令遇到的一些问题总结,scan命令本身没有什么问题,主要是spring-data-redis的问题. 需求 需要遍历redis中key,找到符合某些pat ...

  6. Redis中的Scan命令的使用

    Redis中有一个经典的问题,在巨大的数据量的情况下,做类似于查找符合某种规则的Key的信息,这里就有两种方式,一是keys命令,简单粗暴,由于Redis单线程这一特性,keys命令是以阻塞的方式执行 ...

  7. redis SETBIT命令原理

    redis SETBIT命令原理 /* SETBIT key offset bitvalue */ bitset的使用位来替代传统的整形数字,标识某个数字对应的值是否存在 底层有一个byte[]来实现 ...

  8. redis 《scan命令》

    此命令十分奇特建议参考文档:http://redisdoc.com/database/scan.html#scan     222222222222222并非每次迭代都要使用相同的 COUNT 值. ...

  9. Redis中的原子操作(2)-redis中使用Lua脚本保证命令原子性

    Redis 如何应对并发访问 使用 Lua 脚本 Redis 中如何使用 Lua 脚本 EVAL EVALSHA SCRIPT 命令 SCRIPT LOAD SCRIPT EXISTS SCRIPT ...

随机推荐

  1. PATB1031查验身份证

    这一题遇见的错误有很多,学会了一些知识点 使用了strcpy函数,前是需要复制的数组,后面是被复制的数组 关于字符,如果是非数字可以使用 <='9' && >='0'来判断 ...

  2. IntelliJ IDEA 2019.2已经可以利用补丁永久破解激活了(持续更新)

    前面的文章中,一直在强调2019系列的idea无法使用补丁进行永久激活,但是最近发现,已经有大佬可以利用补丁将idea 2019.2及以下版本激活到2089年了,而且还不用改hosts,实在是佩服,不 ...

  3. 2018的Java

    少用复制黏贴 程序员很多时候都习惯复制黏贴,这里复制一点,那里复制一点,拼拼凑凑的搞出了一段代码.这是一种常态,毕竟没有必要重复造轮子,在开发的时候,讲究的是效率,讲究速度,有时候也是不得不这样做.但 ...

  4. JAVA锁的膨胀过程和优化(阿里)

    阿里的人问什么是锁膨胀,答不上来,回来做了总结: 关于锁的膨胀,synchronized的原理参考:深入分析Synchronized原理(阿里面试题) 首先说一下锁的优化策略. 1,自旋锁 自旋锁其实 ...

  5. 【Kubernetes学习之一】Kubernetes 简介

    环境 centos 7 一.概念和组件Kubernetes是Google开源的一个容器编排引擎,它支持自动化部署.大规模可伸缩.应用容器化管理,简称k8s. 1.Master Kubernetes中的 ...

  6. IE 浏览器设置 打开新的选项卡而不是弹出窗口

    首先打开IE的页面  找到工具 —点击Internet选项

  7. 关于 Object.defineProperty()

    通常,定义或者修改一个JS对象,有以下方式: // 1. 字面量 let obj = { name: 'cedric', age: 18 } // 2. new Object() let obj = ...

  8. c++ builder调用sql server的存储过程进行数据的下载和上传

    小小的几行代码,在这里搞了一天.好好的一个周六过的无比的难受.代码很简单,但是主要原因是因为在用合作商的软件上传数据的时候有些框框没有勾选. come on....... 1.用两个控件ADOConn ...

  9. AKKA Actor创建

    Actor 类定义 Actor 类需要继承AbstractActor类 实现createReceive方法,绑定各类actor收到不同类型消息对应处理不同业务逻辑 默认提供了ReceiveBuilde ...

  10. js文件获取自身的URL路径

    我们做框架开发的时候,经常需要js文件获取的到自身的路径,在网上查了些资料,总结 了两种方式 浏览器支持docment.currentScript.src 直接用这个获取,不用支持的情况 try{ n ...