可以额外参考资料:https://blog.csdn.net/sinat_26917383/article/details/77864582http://www.dataguru.cn/article-12380-1.html

  由于线性回归是基于正态分布的前提假设,所以对其进行统计分析时,需经过数据的转换,使得数据符合正态分布。

  Box 和 Cox在1964年提出的Box-Cox变换可使线性回归模型满足线性性独立性方差齐性以及正态性的同时,又不丢失信息。

  Box-Cox变换是统计建模中常用的一种数据变换,用于连续的响应变量不满足正态分布的情况。在做线性回归的过程中,不可观测的误差可能是和预测变量相关,于是给线性回归的最小二乘法估计系数的结果带来误差,为了解决这样的方差齐性问题,所以考虑对相应因变量做Box-Cox变换,变换之后,可以一定程度上减小不可观测的误差和预测变量的相关性。但是选择的参数要适当,使用极大似然估计得到的参数,可以使上述过程的效果更好。当然,做过Box-Cox变换之后,方差齐性的问题不一定会消失,做过之后仍然需要做方差齐性的检验,看是否还需要采用其他方法。

1. 应用前提:

在做线性回归的过程中,一般线性模型假定;  Y=Xβ + ε, 其中ε满足正态分布,但是利用实际数据建立回归模型时,个别变量的系数通不过。例如往往不可观测的误差 ε 可能是和预测变量相关的,不服从正态分布,于是给线性回归的最小二乘估计系数的结果带来误差,为了使模型满足线性性独立性方差齐性以及正态性,需改变数据形式,故应用box-cox转换。

2. 和其他处理方法的比较:

对于非正太数据的转换方法有:

在一些情况下(P值<0.003)上述方法很难实现正态化处理,所以优先使用Box-Cox转换,但是当P值>0.003时两种方法均可,优先考虑普通的平方变换

Box-Cox推导公式见参考,这里可用sklearn、SAS等实现。

3. 结论

  • 使用Box-Cox变换后的数据得到的回归模型优于变换前的模型,变换可以使模型的解释力度等性能更加优良。
  • 变换后的残差可以更好的满足正态性、独立性等假设前提,降低了伪回归的概率。
  • 使用Box-Cox变换族一般可以保证将数据进行成功的正态变化,但在二分变量或较少水平的等级变量的情况下,不能成功进行转换,此时可以考虑使用广义线性模型,例如logistic模型、johson转换等。

注:关于P值

        假设检验中常见到P值( P-Value,Probability,Pr),P值是进行检验决策的另一个依据。
        P值即概率,反映某一事件发生的可能性大小。统计学根据显著性检验方法所得到的P 值,一般以P < 0.05 为有统计学差异, P<0.01 为有显著统计学差异,P<0.001为有极其显著的统计学差异。其含义是样本间的差异由抽样误差所致的概率小于0.05 、0.01、0.001。实际上,P值不能赋予数据任何重要性,只能说明某事件发生的几率。统计结果中显示Pr > F,也可写成Pr( >F),P = P{ F0.05 > F}或P = P{ F0.01 > F}。统计学上一般P值大于0.05我们可认为该组数据是符合正态分布

box-cox解读的更多相关文章

  1. SAS PROC MCMC example in R: Logistic Regression Random-Effects Model(转)

    In this post I will run SAS example Logistic Regression Random-Effects Model in four R based solutio ...

  2. Kaggle比赛(二)House Prices: Advanced Regression Techniques

    房价预测是我入门Kaggle的第二个比赛,参考学习了他人的一篇优秀教程:https://www.kaggle.com/serigne/stacked-regressions-top-4-on-lead ...

  3. stacking method house price in kaggle top10%

    整合几部分代码的汇总 隐藏代码片段 导入python数据和可视化包 导入统计相关的工具 导入回归相关的算法 导入数据预处理相关的方法 导入模型调参相关的包 读取数据 特征工程 缺失值 类别特征处理-l ...

  4. 解读SSD中的Default box(Prior Box)

    1:SSD更具体的框架如下: 2: Prior Box 缩进在SSD中引入了Prior Box,实际上与anchor非常类似,就是一些目标的预选框,后续通过softmax分类+bounding box ...

  5. 解析opencv中Box Filter的实现并提出进一步加速的方案(源码共享)。

    说明:本文所有算法的涉及到的优化均指在PC上进行的,对于其他构架是否合适未知,请自行试验. Box Filter,最经典的一种领域操作,在无数的场合中都有着广泛的应用,作为一个很基础的函数,其性能的好 ...

  6. 时空上下文视觉跟踪(STC)算法的解读与代码复现(转)

    时空上下文视觉跟踪(STC)算法的解读与代码复现 zouxy09@qq.com http://blog.csdn.net/zouxy09 本博文主要是关注一篇视觉跟踪的论文.这篇论文是Kaihua Z ...

  7. Object Detection · RCNN论文解读

    转载请注明作者:梦里茶 Object Detection,顾名思义就是从图像中检测出目标对象,具体而言是找到对象的位置,常见的数据集是PASCAL VOC系列.2010年-2012年,Object D ...

  8. DCGAN 论文简单解读

    DCGAN的全称是Deep Convolution Generative Adversarial Networks(深度卷积生成对抗网络).是2014年Ian J.Goodfellow 的那篇开创性的 ...

  9. CVPR2019 | Mask Scoring R-CNN 论文解读

    Mask Scoring R-CNN CVPR2019 | Mask Scoring R-CNN 论文解读 作者 | 文永亮 研究方向 | 目标检测.GAN 推荐理由: 本文解读的是一篇发表于CVPR ...

  10. AAAI2019 | 基于区域分解集成的目标检测 论文解读

    Object Detection based on Region Decomposition and Assembly AAAI2019 | 基于区域分解集成的目标检测 论文解读 作者 | 文永亮 学 ...

随机推荐

  1. valgrind memcheck使用方法及效果(转)

    https://windmissing.github.io/linux/2016-02/valgrind-memcheck.html 一.valgrind 1. Valgrind是什么 Valgrin ...

  2. Selenium基础教程(三)自动化插件Katalon

    Katalon-一款好用的selenium自动化测试插件 Selenium 框架是目前使用较广泛的开源自动化框架,一款好的.基于界面的录制工具对于初学者来说可以快速入门:对于老手来说可以提高开发自动化 ...

  3. 第十五节:Asp.Net Core中的各种过滤器(授权、资源、操作、结果、异常)

    一. 简介 1. 说明 提到过滤器,通常是指请求处理管道中特定阶段之前或之后的代码,可以处理:授权.响应缓存(对请求管道进行短路,以便返回缓存的响应). 防盗链.本地化国际化等,过滤器用于横向处理业务 ...

  4. Delphi重庆医保支付【支持重庆东软,万达,银海医保通用】

    作者QQ:(648437169) 点击下载➨Delphi重庆医保支付         东软接口文件         银海接口文件        万达接口文件       重庆市医保接口文档 [Delp ...

  5. python面试导航

    python面试题库 python基础 等待更新中 函数 等待更新中 面向对象 等待更新中 高级编程 等待更新中 数据库 等待更新中 前端&django 等待更新中 crm 等待更新中 drf ...

  6. 【模板】LCT

    核心思想: 动态维护一个森林.支持删边,加边,查询链信息等很多操作. 由若干棵$Splay$组成,每棵$Splay$维护一条链,以深度作为关键字. 也就是说$Splay$的中序遍历相当于从上到下遍历这 ...

  7. DotnetSpider爬虫简单示例 net core

    文章地址 https://blog.csdn.net/sD7O95O/article/details/78097556 安装爬虫框架  NUGET 安装DotnetSpider 创建HTTP协议数据包 ...

  8. Java数组转集合与集合转数组的坑

    在Java中将数组转为集合,会用到Arrays.asList()的方法,然而,这个方法却与我们的预期期望存在一些出入,当用到asList方法将数组转化成List列表时,对得到的List列表进行add( ...

  9. pacman 命令详解

    Pacman 是一个命令行工具,这意味着当你执行下面的命令时,必须在终端或控制台中进行. 1.更新系统 在 Arch Linux 中,使用一条命令即可对整个系统进行更新:pacman -Syu 如果你 ...

  10. Git 理解修改

    参考链接:https://www.liaoxuefeng.com/wiki/896043488029600/897884457270432 Git之所以比其他版本控制系统设计得优秀,就是因为Git跟踪 ...