洛谷 P2357 守墓人
洛谷 P2357 守墓人
题目描述

在一个荒凉的墓地上
有一个令人尊敬的守墓人, 他看守的墓地从来
没有被盗过, 所以人们很放心的把自己的先人的墓
安顿在他那
守墓人能看好这片墓地是必然而不是偶然.....
因为....守墓人懂风水 0.0
他把墓地分为主要墓碑和次要墓碑, 主要墓碑
只能有 1 个, 守墓人把他记为 1 号, 而次要墓碑有
n-1 个,守墓人将之编号为 2,3...n,所以构成了一个有 n 个墓碑的墓地。
而每个墓碑有一个初始的风水值,这些风水值决定了墓地的风水的好坏,所以守墓人
需要经常来查询这些墓碑。
善于运用风水的守墓人,通过一次次逆天改命,使得自己拥有了无限寿命,没人知道
他活了多久。
这天,你幸运的拜访到了他,他要求你和他共同见证接下来几年他的战果,但不过他
每次统计风水值之和都需要你来帮他计算,算错了他会要你命 QAQ
风水也不是不可变,除非遭遇特殊情况,已知在接下来的 2147483647 年里,会有 n 次
灾难,守墓人会有几个操作:
1.将[l,r]这个区间所有的墓碑的风水值增加 k。
2.将主墓碑的风水值增加 k
3.将主墓碑的风水值减少 k
4.统计[l,r]这个区间所有的墓碑的风水值之和
5.求主墓碑的风水值
上面也说了,很多人会把先人的墓安居在这里,而且守墓人活了很多世纪→_→,墓碑
的数量会多的你不敢相信= =
守墓人和善的邀请你帮他完成这些操作,要不然哪天你的旅馆爆炸了,天上下刀子.....
为了活命,还是帮他吧
输入格式
第一行,两个正整数 n,f 表示共有 n 块墓碑,并且在接下来的
2147483647 年里,会有 f 次世界末日
第二行,n 个正整数,表示第 i 块墓碑的风水值
接下来 f 行,每行都会有一个针对世界末日的解决方案,如题所述,标记同题
输出格式
输出会有若干行,对 4 和 5 的提问做出回答
输入输出样例
输入 #1复制
输出 #1复制
说明/提示
20%的数据满足:1≤n≤100
50%的数据满足:1≤n≤6000
100%的数据满足:1≤n,f≤2*10^5
题解:
怎么说呢?这是我做过的唯一一道题目背景出的比我还%%#¥的人。
(真是一道好题)
线段树模板题。竟然是蓝?
我曾一度怀疑查1号节点的值该怎么搞。后来直接把x,y置成了1.
完美解决。
记得开Longlong
代码:
#include<cstdio>
#define int long long
#define lson pos<<1
#define rson pos<<1|1
using namespace std;
const int maxn=2*1e5+1;
int n,f;
int a[maxn];
int tree[maxn<<2],lazy[maxn<<2];
void build(int pos,int l,int r)
{
int mid=(l+r)>>1;
if(l==r)
{
tree[pos]=a[l];
return;
}
build(lson,l,mid);
build(rson,mid+1,r);
tree[pos]=tree[lson]+tree[rson];
}
void mark(int pos,int l,int r,int k)
{
tree[pos]+=(r-l+1)*k;
lazy[pos]+=k;
}
void pushdown(int pos,int l,int r)
{
int mid=(l+r)>>1;
mark(lson,l,mid,lazy[pos]);
mark(rson,mid+1,r,lazy[pos]);
lazy[pos]=0;
}
void update(int pos,int l,int r,int x,int y,int k)
{
int mid=(l+r)>>1;
if(x<=l && r<=y)
{
mark(pos,l,r,k);
return;
}
pushdown(pos,l,r);
if(x<=mid)
update(lson,l,mid,x,y,k);
if(y>mid)
update(rson,mid+1,r,x,y,k);
tree[pos]=tree[lson]+tree[rson];
}
int query(int pos,int l,int r,int x,int y)
{
int mid=(l+r)>>1;
int ret=0;
if(x<=l && r<=y)
return tree[pos];
pushdown(pos,l,r);
if(x<=mid)
ret+=query(lson,l,mid,x,y);
if(y>mid)
ret+=query(rson,mid+1,r,x,y);
return ret;
}
signed main()
{
scanf("%lld%lld",&n,&f);
for(int i=1;i<=n;i++)
scanf("%lld",&a[i]);
build(1,1,n);
while(f--)
{
int k,x,y,z;
scanf("%lld",&k);
if(k==1)
{
scanf("%lld%lld%lld",&x,&y,&z);
update(1,1,n,x,y,z);
}
else if(k==2)
{
scanf("%lld",&z);
update(1,1,n,1,1,z);
}
else if(k==3)
{
scanf("%lld",&z);
update(1,1,n,1,1,-z);
}
else if(k==4)
{
scanf("%lld%lld",&x,&y);
printf("%lld\n",query(1,1,n,x,y));
}
else if(k==5)
printf("%lld\n",query(1,1,n,1,1));
}
return 0;
}
洛谷 P2357 守墓人的更多相关文章
- 『题解』洛谷P2357 守墓人
Portal Portal1: Luogu Description 在一个荒凉的墓地上有一个令人尊敬的守墓人,他看守的墓地从来没有被盗过, 所以人们很放心的把自己的先人的墓安顿在他那守墓人能看好这片墓 ...
- 洛谷1640 bzoj1854游戏 匈牙利就是又短又快
bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...
- 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.
没有上司的舞会 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...
- 洛谷P1108 低价购买[DP | LIS方案数]
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
- 洛谷 P2701 [USACO5.3]巨大的牛棚Big Barn Label:二维数组前缀和 你够了 这次我用DP
题目背景 (USACO 5.3.4) 题目描述 农夫约翰想要在他的正方形农场上建造一座正方形大牛棚.他讨厌在他的农场中砍树,想找一个能够让他在空旷无树的地方修建牛棚的地方.我们假定,他的农场划分成 N ...
- 洛谷P1710 地铁涨价
P1710 地铁涨价 51通过 339提交 题目提供者洛谷OnlineJudge 标签O2优化云端评测2 难度提高+/省选- 提交 讨论 题解 最新讨论 求教:为什么只有40分 数组大小一定要开够 ...
- 洛谷P1371 NOI元丹
P1371 NOI元丹 71通过 394提交 题目提供者洛谷OnlineJudge 标签云端评测 难度普及/提高- 提交 讨论 题解 最新讨论 我觉得不需要讨论O long long 不够 没有取 ...
- 洛谷P1538迎春舞会之数字舞蹈
题目背景 HNSDFZ的同学们为了庆祝春节,准备排练一场舞会. 题目描述 在越来越讲究合作的时代,人们注意的更多的不是个人物的舞姿,而是集体的排列. 为了配合每年的倒计时,同学们决定排出——“数字舞蹈 ...
- 洛谷八月月赛Round1凄惨记
个人背景: 上午9:30放学,然后因为学校举办读书工程跟同学去书城选书,中午回来开始打比赛,下午又回老家,中间抽出一点时间调代码,回家已经8:50了 也许是7月月赛时“连蒙带骗”AK的太幸运然而因同学 ...
随机推荐
- 洛谷P3206 [HNOI2010]城市建设
神仙题 题目大意: 有一张\(n\)个点\(m\)条边的无向联通图,每次修改一条边的边权,问每次修改之后这张图的最小生成树权值和 话说是不是\(cdq\)题目都可以用什么数据结构莽过去啊-- 这道题目 ...
- [LOJ 6433][PKUSC 2018]最大前缀和
[LOJ 6433][PKUSC 2018]最大前缀和 题意 给定一个长度为 \(n\) 的序列, 求把这个序列随机打乱后的最大前缀和的期望乘以 \(n!\) 后对 \(998244353\) 取膜后 ...
- VS2017 Thrift编译出的Release版本的库调用报错LNK2001
在使用thrift的过程中, 当我使用完thrift debug版本编译出来的库调试完成后, 改成release版本的时候, 就出现了如下错误, 莫名其妙啊, 同一套代码, 那只能是编译库的时候设置和 ...
- Rabbitmq 实现延时任务
1.需要用到插件 rabbitmq_delayed_message_exchange 来实现,插件下载地址:https://www.rabbitmq.com/community-plugins.htm ...
- (四十二)golang--协程之间通信的方式
假设我们现在有这么一个需求: 计算1-200之间各个数的阶乘,并将每个结果保存在mao中,最终显示出来,要求使用goroutime. 分析: (1)使用goroutime完成,效率高,但是会出现并发/ ...
- ICP 匹配定位算法学习记录
icp 算法原理是: 选取目标点云P和源点云Q,按照一定的约束条件,找到最邻近点(pi,qi),然后计算出最优R和t(旋转和平移), 使得误差函数最小,误差函数E(R,t): 基本算法流程: 1.在目 ...
- Anaconda--在虚拟环境中安装CUDA and cudnn
在conda虚拟环境中安装CUDAconda install cudatoolkit=8.0 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs ...
- redis之HyperLogLog
HyperLogLog 提供不精确的去重计数方案,虽然不精确但是也不是非常不精确,标准误差是 0.81%. 使用方法 HyperLogLog 提供了两个指令 pfadd 和 pfcount,根据字面意 ...
- SQL Server中,如何查看每个数据库的Owner是哪个SQL Server账户,也就是谁创建的
有时候我们作为SQL Server的DBA,会需要查找每个数据库的Owner是哪个SQL Server账户,也就是谁创建的. 我们可以使用系统存储过程"sys.sp_helpdb" ...
- MySQL5.7增量备份恢复全实战
一. 简介 1. 增量备份 增量备份是指在一次全备份或上一次增量备份后,以后每次的备份只需备份与前一次相比增加或者被修改的文件.这就意味着,第一次增量 备份的对象是进行全备后所产生的增加和修改的文件; ...