[LeetCode] 518. Coin Change 2 硬币找零之二
You are given coins of different denominations and a total amount of money. Write a function to compute the number of combinations that make up that amount. You may assume that you have infinite number of each kind of coin.
Note: You can assume that
- 0 <= amount <= 5000
- 1 <= coin <= 5000
- the number of coins is less than 500
- the answer is guaranteed to fit into signed 32-bit integer
Example 1:
Input: amount = 5, coins = [1, 2, 5]
Output: 4
Explanation: there are four ways to make up the amount:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
Example 2:
Input: amount = 3, coins = [2]
Output: 0
Explanation: the amount of 3 cannot be made up just with coins of 2.
Example 3:
Input: amount = 10, coins = [10]
Output: 1
这道题是之前那道 Coin Change 的拓展,那道题问我们最少能用多少个硬币组成给定的钱数,而这道题问的是组成给定钱数总共有多少种不同的方法。还是要使用 DP 来做,首先来考虑最简单的情况,如果只有一个硬币的话,那么给定钱数的组成方式就最多有1种,就看此钱数能否整除该硬币值。当有两个硬币的话,组成某个钱数的方式就可能有多种,比如可能由每种硬币单独来组成,或者是两种硬币同时来组成,怎么量化呢?比如我们有两个硬币 [1,2],钱数为5,那么钱数的5的组成方法是可以看作两部分组成,一种是由硬币1单独组成,那么仅有一种情况 (1+1+1+1+1);另一种是由1和2共同组成,说明组成方法中至少需要有一个2,所以此时先取出一个硬币2,然后只要拼出钱数为3即可,这个3还是可以用硬币1和2来拼,所以就相当于求由硬币 [1,2] 组成的钱数为3的总方法。是不是不太好理解,多想想。这里需要一个二维的 dp 数组,其中 dp[i][j] 表示用前i个硬币组成钱数为j的不同组合方法,怎么算才不会重复,也不会漏掉呢?我们采用的方法是一个硬币一个硬币的增加,每增加一个硬币,都从1遍历到 amount,对于遍历到的当前钱数j,组成方法就是不加上当前硬币的拼法 dp[i-1][j],还要加上,去掉当前硬币值的钱数的组成方法,当然钱数j要大于当前硬币值,状态转移方程也在上面的分析中得到了:
dp[i][j] = dp[i - 1][j] + (j >= coins[i - 1] ? dp[i][j - coins[i - 1]] : 0)
注意要初始化每行的第一个位置为0,参见代码如下:
解法一:
class Solution {
public:
int change(int amount, vector<int>& coins) {
vector<vector<int>> dp(coins.size() + , vector<int>(amount + , ));
dp[][] = ;
for (int i = ; i <= coins.size(); ++i) {
dp[i][] = ;
for (int j = ; j <= amount; ++j) {
dp[i][j] = dp[i - ][j] + (j >= coins[i - ] ? dp[i][j - coins[i - ]] : );
}
}
return dp[coins.size()][amount];
}
};
我们可以对空间进行优化,由于 dp[i][j] 仅仅依赖于 dp[i - 1][j] 和 dp[i][j - coins[i - 1]] 这两项,就可以使用一个一维dp数组来代替,此时的 dp[i] 表示组成钱数i的不同方法。其实最开始的时候,博主就想着用一维的 dp 数组来写,但是博主开始想的方法是把里面两个 for 循环调换了一个位置,结果计算的种类数要大于正确答案,所以一定要注意 for 循环的顺序不能搞反,参见代码如下:
解法二:
class Solution {
public:
int change(int amount, vector<int>& coins) {
vector<int> dp(amount + , );
dp[] = ;
for (int coin : coins) {
for (int i = coin; i <= amount; ++i) {
dp[i] += dp[i - coin];
}
}
return dp[amount];
}
};
在 CareerCup 中,有一道极其相似的题 9.8 Represent N Cents 美分的组成,书里面用的是那种递归的方法,博主想将其解法直接搬到这道题里,但是失败了,博主发现使用那种的递归的解法必须要有值为1的硬币存在,这点无法在这道题里满足。你以为这样博主就没有办法了吗?当然有,博主加了判断,当用到最后一个硬币时,判断当前还剩的钱数是否能整除这个硬币,不能的话就返回0,否则返回1。还有就是用二维数组的 memo 会 TLE,所以博主换成了 map,就可以通过啦~
解法三:
class Solution {
public:
int change(int amount, vector<int>& coins) {
if (amount == ) return ;
if (coins.empty()) return ;
map<pair<int, int>, int> memo;
return helper(amount, coins, , memo);
}
int helper(int amount, vector<int>& coins, int idx, map<pair<int, int>, int>& memo) {
if (amount == ) return ;
else if (idx >= coins.size()) return ;
else if (idx == coins.size() - ) return amount % coins[idx] == ;
if (memo.count({amount, idx})) return memo[{amount, idx}];
int val = coins[idx], res = ;
for (int i = ; i * val <= amount; ++i) {
int rem = amount - i * val;
res += helper(rem, coins, idx + , memo);
}
return memo[{amount, idx}] = res;
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/518
类似题目:
参考资料:
https://leetcode.com/problems/coin-change-2/
https://leetcode.com/problems/coin-change-2/discuss/141076/Logical-Thinking-with-Clear-Java-Code
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] 518. Coin Change 2 硬币找零之二的更多相关文章
- [LeetCode] 518. Coin Change 2 硬币找零 2
You are given coins of different denominations and a total amount of money. Write a function to comp ...
- [LeetCode] Coin Change 2 硬币找零之二
You are given coins of different denominations and a total amount of money. Write a function to comp ...
- 【LeetCode】518. Coin Change 2 解题报告(Python)
[LeetCode]518. Coin Change 2 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目 ...
- dp算法之硬币找零问题
题目:硬币找零 题目介绍:现在有面值1.3.5元三种硬币无限个,问组成n元的硬币的最小数目? 分析:现在假设n=10,画出状态分布图: 硬币编号 硬币面值p 1 1 2 3 3 5 编号i/n总数j ...
- codevs 3961 硬币找零【完全背包DP/记忆化搜索】
题目描述 Description 在现实生活中,我们经常遇到硬币找零的问题,例如,在发工资时,财务人员就需要计算最少的找零硬币数,以便他们能从银行拿回最少的硬币数,并保证能用这些硬币发工资. 我们应该 ...
- NYOJ 995 硬币找零
硬币找零 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 在现实生活中,我们经常遇到硬币找零的问题,例如,在发工资时,财务人员就需要计算最少的找零硬币数,以便他们能从 ...
- [LeetCode] Coin Change 硬币找零
You are given coins of different denominations and a total amount of money amount. Write a function ...
- [LeetCode] 322. Coin Change 硬币找零
You are given coins of different denominations and a total amount of money amount. Write a function ...
- [LeetCode] Lemonade Change 买柠檬找零
At a lemonade stand, each lemonade costs $5. Customers are standing in a queue to buy from you, and ...
随机推荐
- COMP 2406 – F19
COMP 2406 – F19 – A4 Due Friday, November 22nd at 11:59 PMAssignment 4 Trivia Quiz BuilderSubmit a s ...
- jQuery 源码分析(二) 入口模块
jQuery返回的对象本质上是一个JavaScript对象,而入口模块则可以保存对应的节点的引用,然后供其它模块操作 我们创建jQuery对象时可以给jQuery传递各种不同的选择器,如下: fals ...
- [新概念英语] Lesson 12 : GOODBYE AND GOOD LUCK
Lesson 12 : GOODBYE AND GOOD LUCK New words and expressions : luck (n) 运气 例句 You're not having much ...
- redis 面试问题问答Top 10
1)什么是Redis? English:Redis is an open source (BSD licensed), in-memory data structure store, used as ...
- 使用角色管理工具 安装或配置microsoft.net framework 3.5 sp1
解决方法:
- c#编码注释
1 目录 2 前言... 3 2.1 编写目的... 3 2.2 适用范围... 4 3 命名规范... 4 3.1 命名约 ...
- ASP.NET中的请求验证
这两天做项目的时候偶然发现项目中的保存功能的时候出现这样的异常:异常详细信息: System.Web.HttpRequestValidationException: 从客户端(XXXX)中检测到有潜在 ...
- Scrapy 运行多个爬虫
本文所使用的 Scrapy 版本:Scrapy==1.8.0 一个 Scrapy 项目下可能会有多个爬虫,本文陈述两种情况: 多个爬虫 所有爬虫 显然,这两种情况并不一定是等同的.假设当前项目下有 3 ...
- C#下的时间测试(用于计算方法执行时间)
public class Timing { private TimeSpan m_StartTime; private TimeSpan duringTime; public Timing() //构 ...
- MySQL基础(四)(子查询与链接)
1.子查询简介 其中,所谓的“外层查询”并不是指“查找”,指的是所有SQL语句的统称:结构化查询语言(Structured Query Language),简称SQL. : 2.由比较运算符引发的子查 ...