[LeetCode] 146. LRU Cache 最近最少使用页面置换缓存器
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.
get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
Follow up:
Could you do both operations in O(1) time complexity?
Example:
LRUCache cache = new LRUCache( 2 /* capacity */ ); cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // returns 1
cache.put(3, 3); // evicts key 2
cache.get(2); // returns -1 (not found)
cache.put(4, 4); // evicts key 1
cache.get(1); // returns -1 (not found)
cache.get(3); // returns 3
cache.get(4); // returns 4
这道题让我们实现一个 LRU 缓存器,LRU 是 Least Recently Used 的简写,就是最近最少使用的意思。那么这个缓存器主要有两个成员函数,get 和 put,其中 get 函数是通过输入 key 来获得 value,如果成功获得后,这对 (key, value) 升至缓存器中最常用的位置(顶部),如果 key 不存在,则返回 -1。而 put 函数是插入一对新的 (key, value),如果原缓存器中有该 key,则需要先删除掉原有的,将新的插入到缓存器的顶部。如果不存在,则直接插入到顶部。若加入新的值后缓存器超过了容量,则需要删掉一个最不常用的值,也就是底部的值。具体实现时我们需要三个私有变量,cap, l和m,其中 cap 是缓存器的容量大小,l是保存缓存器内容的列表,m是 HashMap,保存关键值 key 和缓存器各项的迭代器之间映射,方便我们以 O(1) 的时间内找到目标项。
然后我们再来看 get 和 put 如何实现,get 相对简单些,我们在 HashMap 中查找给定的 key,若不存在直接返回 -1。如果存在则将此项移到顶部,这里我们使用 C++ STL 中的函数 splice,专门移动链表中的一个或若干个结点到某个特定的位置,这里我们就只移动 key 对应的迭代器到列表的开头,然后返回 value。这里再解释一下为啥 HashMap 不用更新,因为 HashMap 的建立的是关键值 key 和缓存列表中的迭代器之间的映射,get 函数是查询函数,如果关键值 key 不在 HashMap,那么不需要更新。如果在,我们需要更新的是该 key-value 键值对儿对在缓存列表中的位置,而 HashMap 中还是这个 key 跟键值对儿的迭代器之间的映射,并不需要更新什么。
对于 put,我们也是现在 HashMap 中查找给定的 key,如果存在就删掉原有项,并在顶部插入新来项,然后判断是否溢出,若溢出则删掉底部项(最不常用项)。代码如下:
class LRUCache{
public:
LRUCache(int capacity) {
cap = capacity;
}
int get(int key) {
auto it = m.find(key);
if (it == m.end()) return -;
l.splice(l.begin(), l, it->second);
return it->second->second;
}
void put(int key, int value) {
auto it = m.find(key);
if (it != m.end()) l.erase(it->second);
l.push_front(make_pair(key, value));
m[key] = l.begin();
if (m.size() > cap) {
int k = l.rbegin()->first;
l.pop_back();
m.erase(k);
}
}
private:
int cap;
list<pair<int, int>> l;
unordered_map<int, list<pair<int, int>>::iterator> m;
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/146
类似题目:
Design Compressed String Iterator
参考资料:
https://leetcode.com/problems/lru-cache/
http://www.cnblogs.com/TenosDoIt/p/3417157.html
https://leetcode.com/problems/lru-cache/discuss/46285/unordered_map-list
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] 146. LRU Cache 最近最少使用页面置换缓存器的更多相关文章
- [LeetCode] LRU Cache 最近最少使用页面置换缓存器
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the fol ...
- 146 LRU Cache 最近最少使用页面置换算法
设计和实现一个 LRU(最近最少使用)缓存 数据结构,使它应该支持以下操作: get 和 put .get(key) - 如果密钥存在于缓存中,则获取密钥的值(总是正数),否则返回 -1.put(k ...
- [LeetCode] 460. LFU Cache 最近最不常用页面置换缓存器
Design and implement a data structure for Least Frequently Used (LFU) cache. It should support the f ...
- [LeetCode] LFU Cache 最近最不常用页面置换缓存器
Design and implement a data structure for Least Frequently Used (LFU) cache. It should support the f ...
- [LeetCode] 146. LRU Cache 近期最少使用缓存
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the fol ...
- leetcode 146. LRU Cache 、460. LFU Cache
LRU算法是首先淘汰最长时间未被使用的页面,而LFU是先淘汰一定时间内被访问次数最少的页面,如果存在使用频度相同的多个项目,则移除最近最少使用(Least Recently Used)的项目. LFU ...
- LeetCode之LRU Cache 最近最少使用算法 缓存设计
设计并实现最近最久未使用(Least Recently Used)缓存. 题目描述: Design and implement a data structure for Least Recently ...
- Java for LeetCode 146 LRU Cache 【HARD】
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the fol ...
- leetcode@ [146] LRU Cache (TreeMap)
https://leetcode.com/problems/lru-cache/ Design and implement a data structure for Least Recently Us ...
随机推荐
- LeetCode 141:环形链表 Linked List Cycle
给定一个链表,判断链表中是否有环. 为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始). 如果 pos 是 -1,则在该链表中没有环. Given a l ...
- RestTemplate的三种请求方式
转载 https://blog.csdn.net/qq_36364521/article/details/84203133
- 【前端知识体系-JS相关】对移动端和Hybrid开发的理解?
1.hybrid是什么,为何使用hybrid呢? 概念: hybrid就是前端和客户端的混合开发 需要前端开发人员和客户端开发人员配合完成 某些环节也可能会涉及到server端 大前端:网页.APP. ...
- kubernetes 之一些报错
1.kubelet与docker的Cgroup Driver不一致导致的报错 7月 :: kubeadm-master kubelet[]: W0701 :: watcher.go:] Error w ...
- 钉钉SDK使用。
(1)到 https://open-doc.dingtalk.com/microapp/faquestions/vzbp02 下载SDK (2)引入 using DingTalk.Api; using ...
- ssh遇到port 22:No route to host问题的解决方法
一 iptables 问题 1.没有安装,可以先安装 yum install iptables 2.防火墙的开启与关闭 即时生效,重启失效 service iptables start(开启) ser ...
- 拒绝CPU挖矿矿工有责
长期以来CPU挖矿给挖矿行业带来持久的负面影响,因为CPU是电脑的核心设备,一挖矿就干不了别的了,大家是否可以达成共识拒绝CPU挖矿? 显卡挖矿刚好构建在不影响大众的日常工作生活对电脑的需求之上,家用 ...
- Asp.Net Core 中的静态文件
Asp.Net Core 中的静态文件 在这节中我们将讨论如何使 ASP.NET Core 应用程序,支持静态文件,如 HTML,图像,CSS 和 JavaScript 文件. 静态文件 默认情况下, ...
- DevExpress的TreeList实现节点上添加自定义右键菜单并实现删除节点功能
场景 Winform控件-DevExpress18下载安装注册以及在VS中使用: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/1 ...
- Visual Studio2017使用EF添加Mysql
为了能够在Visual Studio 中集成Mysql, 首先需要安装MySql的连接工具 与 MySql的VisualStudio插件. MySQL Connector Net 6.8.8 (目前最 ...