BZOJ2818 欧拉函数
题意:求1--n中满足gcd(x,y)的值为质数的数对(x,y)的数目 ( (x,y)和(y,x)算两个 )
sol:
设p[i]是一个质数,那么以下两个命题是等价的:
1.gcd(x,y)=1
2.gcd(x*p[i],y*p[i])=p[i]
eg:gcd(36,25)=1,gcd(36*7,25*7)=7
所以对于1--n的所有质数p[i],求一下1<=x,y<=n/p[i]中所有gcd(x,y)=1的数对的数目即可。
如何求1--r范围内所有互质数对的数目?
考虑欧拉函数φ(x)=1..x中与x互质的数的数目
设x<=y,那么这样就可以求出来了:
for y:= to r do //1不是质数也不是合数,而且1和任意数的gcd都等于1,应该除去
ans+=*phi[y]; //(x,y)和(y,x)算两个
ans++; //这是本题的特殊情况:当x==y时,gcd(y,y)的值也是质数
Solve函数是题解里用的,事先累加了所有2*phi[i],速度要快一点点
Reference: http://blog.csdn.net/acdreamers/article/details/8542292
#include <iostream>
#include <cstring>
#include <cmath>
using namespace std;
#define LL long long
#define MMX 10000010
int phi[MMX],p[MMX];
LL psum[MMX];
bool pr[MMX];
LL nm,ret,n; void calc_phi(int n) //求1--n的欧拉函数,phi[i]
{ //psum[n]:sum of phi[1..n]*2
for (int i=;i<=n;i++)
phi[i]=;
phi[]=;
for (int i=;i<=n;i++)
if (!phi[i])
for (int j=i;j<=n;j+=i)
{
if (!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
psum[]=;
for (int i=;i<=n;i++)
psum[i]=psum[i-]+phi[i]*;
} void isprime(LL n) //求1--n的质数。pr[i]=1 : i is a prime
{
nm=;
memset(pr,true,sizeof(pr));
LL m=sqrt(n+0.5);
pr[]=false;
for (LL i=;i<=m;i++)
if (pr[i])
{
for (LL j=i*i;j<=n;j+=i)
pr[j]=false;
}
for (int i=;i<=n;i++)
if (pr[i])
{
nm++;
p[nm]=i;
}
} LL Solve(int n) //
{
LL ans = ;
for(int i=; i<=nm&&p[i]<=n; i++)
ans += + psum[n/p[i]];
return ans;
} int main()
{
cin>>n;
isprime(n);
calc_phi(n); LL ret=;
for (int i=;i<=nm;i++)
{
int r=n/p[i];
for (int j=;j<=r;j++) //注意1不能包括进去,因为gcd(1,?)恒等于1
ret+=*phi[j];
ret++;
}
cout<<ret<<endl; //cout<<endl<<Solve(n)<<endl;
return ;
}
BZOJ2818 欧拉函数的更多相关文章
- Bzoj-2818 Gcd 欧拉函数
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x ...
- BZOJ2818: Gcd 欧拉函数求前缀和
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 如果两个数的x,y最大公约数是z,那么x/z,y/z一定是互质的 然后找到所有的素数,然后用欧拉函数求一 ...
- bzoj2818 Gcd(欧拉函数)
Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sam ...
- 【BZOJ2818】Gcd (欧拉函数)
网址:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 一道数论裸题,欧拉函数前缀和搞一下就行了. 小于n的gcd为p的无序数对,就是phi(1 ...
- 【BZOJ2818】Gcd(莫比乌斯反演,欧拉函数)
题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对 1<=N<=10^7 思路:莫比乌斯反演,同BZOJ2820…… ; ..max]of ...
- 【洛谷】4917:天守阁的地板【欧拉函数的应用】【lcm与gcd】【同除根号优化】
P4917 天守阁的地板 题目背景 在下克上异变中,博丽灵梦为了找到异变的源头,一路打到了天守阁 异变主谋鬼人正邪为了迎击,将天守阁反复颠倒过来,而年久失修的天守阁也因此掉下了很多块地板 异变结束后, ...
- 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)
P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...
- hdu2588 GCD (欧拉函数)
GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数. (文末有题) 知 ...
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
随机推荐
- 华为访问列表traffic-policy案例
1,最近某公司有个需求 2,配置为重点--在于思路 需求:192.168.1 3 5 8网段不能访问2.x网段 仅允许财务2.x访问1.253打印机. acl name permit_printer ...
- php基础22:上传并且保存文件
<?php /* 文件上传的限制 && 保存被上传的文件 在这个脚本中,我们增加了对文件上传的限制.用户只能上传 .gif 或 .jpeg 文件,文件大小必须小于 20 kb: ...
- matlab如何读取未知行数,带头文件和字段名的txt文件
文件格式是这样的 20120108 50024 X235RZB30801 01 15 2361 2362 2363 2364 2365 2366 2367 2368 2369 236A 236B 23 ...
- java实现八皇后问题(递归和循环两种方式)
循环方式: package EightQueens; public class EightQueensNotRecursive { private static final boolean AVA ...
- 20135220谈愈敏Linux_总结
Linux_总结 具体博客链接 计算机是如何工作的 操作系统是如何工作的 构造一个简单的Linux系统MenuOS 系统调用(上) 系统调用(下) 进程的描述和创建 可执行程序的装载 进程的切换和系统 ...
- 第十章 系统级I/O
第十章 系统级I/O 一.Unix I/O 1.一个unix文件就是一个m个字节的序列 2.unix外壳创建的每个进程开始时都有三个打开的文件:标准输入(0) .标准输出(1)和标准错误(-1). 二 ...
- 浪潮之巅IT那点事之一——AT&T的兴衰
首次接触到<浪潮之巅>这本书,几乎是熬了一个通宵把上下两册全部看完,感慨颇多.从事计算机基础教育多年,每次在讲计算机导论课程时,总是在重复同样的内容,讲一些计算机结构.操作系统.算法.软件 ...
- 创建Spring容器
对于使用Spring的web应用,无须手动创建Spring容器,而是通过配置文件,声明式的创建Spring容器.在Web应用中,创建Spring容器有如下两种方式:1.直接在web.xml文件中配置: ...
- iOS开发UI篇—popoverController简单介绍(ipad)
一.简单介绍 1.什么是UIPopoverController 是iPad开发中常见的一种控制器(在iPhone上不允许使用) 跟其他控制器不一样的是,它直接继承自NSObject,并非继承自UIVi ...
- java之hashCode
package com.simope.myTest; import java.util.HashMap; import java.util.Map; public class Test20151022 ...