Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable
原文:http://blog.csdn.net/abcjennifer/article/details/7700772
本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检测、大规模机器学习等章节。所有内容均来自Standford公开课machine learning中Andrew老师的讲解。(https://class.coursera.org/ml/class/index)
第二讲-------多变量线性回归 Linear Regression with multiple variable
(一)、Multiple Features:
多变量假设:输出由多维输入决定,即输入为多维特征。如下图所示:Price为输出,前面四维为输入:
假设h(x)=θ0+θ1x1+……所谓多参数线性回归即每个输入x有(n+1)维[x0……xn]
(二)、Gradient Descent for Multiple Variables:
左边为但参数的梯度递减单变量学习方法,右图new algorithm为多变量学习方法。
(三)、Gradient Descent for Multiple Variables - Feature Scaling
It is important to 归一化feature,所以用到了feature scaling,即将所有feature归一化到[-1,1]区间内:
归一化方法:xi=(xi-μi)/σi
(四)、Gradient Descent for Multiple Variables - Learning Rate
梯度下降算法中另一关键点就是机器学习率的设计:设计准则是保证每一步迭代后都保证能使cost function下降。
这是cost function顺利下降的情况:
这是cost function不顺利下降的情况:
原因如右图所示,由于学习率过大,使得随着迭代次数的增加,J(θ)越跳越大,造成无法收敛的情况。
解决方法:减小学习率
总结:如何选取学习率:
测试α=0.001,收敛太慢(cost function下降太慢),测试0.01,过了?那就0.003……
(五)、Features and Polynomial Regression
假设我们的输入为一座房子的size,输出为该house的price,对其进行多项式拟合:
有两个选择,二次方程或者三次方程。考虑到二次方程的话总会到最高点后随着size↑,price↓,不合常理;因此选用三次方程进行拟合。
这里归一化是一个关键。
或者有另一种拟合方程,如图粉红色曲线拟合所示:
(六)、Normal Equation
与gradient descent平行的一种方法为Normal Equation,它采用线性代数中非迭代的方法,见下图:
我们想要找到使cost function 最小的θ,就是找到使得导数取0时的参数θ:
该参数可由图中红框公式获得:
具体来说:X是m×(n+1)的矩阵,y是m×1的矩阵
上图中为什么x要加上一列1呢?因为经常设置X(i)0=1;
下面比较一下Gradient Descent与Normal Equation的区别:
(七)、Normal Equation Noninvertibility
我们已知,对于有m个样本,每个拥有n个feature的一个训练集,有X是m×(n+1)的矩阵,XTX是(n+1)×(n+1)的方阵,那么对于参数θ的计算就出现了一个问题,如果|XTX|=0,即XTX不可求逆矩阵怎么办?这时可以进行冗余feature的删除(m<=n的情况,feature过多):
Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable的更多相关文章
- [Machine Learning] 多变量线性回归(Linear Regression with Multiple Variable)-特征缩放-正规方程
我们从上一篇博客中知道了关于单变量线性回归的相关问题,例如:什么是回归,什么是代价函数,什么是梯度下降法. 本节我们讲一下多变量线性回归.依然拿房价来举例,现在我们对房价模型增加更多的特征,例如房间数 ...
- 机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)
机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables) 同样是预测房价问题 如果有多个特征值 那么这种情况下 假设h表示 ...
- 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...
- 机器学习 (一) 单变量线性回归 Linear Regression with One Variable
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...
- 机器学习第4课:多变量线性回归(Linear Regression with Multiple Variables)
4.1 多维特征 目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征, 例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,...,xn).
- Ng第四课:多变量线性回归(Linear Regression with Multiple Variables)
4.1 多维特征 4.2 多变量梯度下降 4.3 梯度下降法实践 1-特征缩放 4.4 梯度下降法实践 2-学习率 4.5 特征和多项式回归 4.6 正规方程 4.7 正规方程及不可逆性 ...
- 斯坦福第四课:多变量线性回归(Linear Regression with Multiple Variables)
4.1 多维特征 4.2 多变量梯度下降 4.3 梯度下降法实践 1-特征缩放 4.4 梯度下降法实践 2-学习率 4.5 特征和多项式回归 4.6 正规方程 4.7 正规方程及不可逆性 ...
- python实现多变量线性回归(Linear Regression with Multiple Variables)
本文介绍如何使用python实现多变量线性回归,文章参考NG的视频和黄海广博士的笔记 现在对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为( x1,x2,..., ...
- 4、、多变量线性回归(Linear Regression with Multiple Variables)
4.1 多维特征 目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,...xn) 增添更多特征后, ...
随机推荐
- Bootstrap系列 -- 16. 文本域textarea
文本域和原始使用方法一样,设置rows可定义其高度,设置cols可以设置其宽度.但如果textarea元素中添加了类名“form-control”类名,则无需设置cols属性.因为Bootstrap框 ...
- js获取服务器时间戳
<!DOCTYPE html> <html> <head> <title>ajax</title> </head> <bo ...
- Spring 管理数据源
Spring 管理数据源 不管通过何种持久化技术,都必须通过数据连接访问数据库,在Spring中,数据连接是通过数据源获得的.在以往的应用中,数据源一般是Web应用服务器提供的.在Spring中,你不 ...
- The big deffrence between ($(du * )) and $(du *)
Infolist=($(du *))echo "Get the list one $Infolist"This has formed a array after quating t ...
- BZOJ-1067 降雨量 线段树+分类讨论
这道B题,刚的不行,各种碎点及其容易忽略,受不鸟了直接 1067: [SCOI2007]降雨量 Time Limit: 1 Sec Memory Limit: 162 MB Submit: 2859 ...
- Angulajs系列-01-入门
1.解决什么问题? a, controller的各种的创建 b,体验angular的双向绑定 2.怎么解决 2.1 引入angularjs 下载地址 2.2 创建controller的方法 2.2.1 ...
- Shell编程检测监控mysql的CPU占用率
shell编程很强大! 网站访问量大的时候mysql的压力就比较大,当mysql的CPU利用率超过300%的时候就不能提供服务了,近乎卡死状态,这时候最好的方法就是重启mysql服务.由于这种事具有不 ...
- java 打包jar文件以在没有安装JDK或JRE的机子上运行
前言: java号称“一次编译,到处运行”,但这有个前提,那就是你的机子上得安装java环境.对于开发人员或其他一些比较懂计算机的人来说这没什么,但是对于一些不懂计算机的人来说这会很麻烦,他们更希望的 ...
- Ubuntu格式化分区时的一个小错误
admin@gpc:/$ sudo mkfs -t ext3 -c /dev/sdb1 mkfs.ext3: inode_size (128) * inodes_count (0) too big ...
- HttpApplication的处理管道处理过程简单描述
在asp.net中,asp.net服务器对每次请求的处理过程都是相同的,都要经过HttpApplication的处理管道.管道内的处理过程是固定的,在服务器处理请求的各个阶段,伴随着处理的进行,依次触 ...