acdream.郭式树(数学推导)
Time Limit:2000MS Memory Limit:128000KB 64bit IO Format:%lld & %llu
Description
郭橐驼,不知始何名。病偻,隆然伏行,有类橐驼者,故乡人号之驼。驼闻之,曰:“甚善。名我固当。”因舍其名,亦自谓橐驼云。其乡曰丰乐乡,在长安西。驼业种树,凡长安豪富人为观游及卖果者,皆争迎取养。视驼所种树,或移徙,无不活;且硕茂,蚤实以蕃。他植者虽窥伺效慕,莫能如也。 有问之,对曰:“橐驼非能使木寿且孳也,以能顺木之天,以致其性焉尔。凡植木之性,其本欲舒,其培欲平,其土欲故,其筑欲密。既然已,勿动勿虑,去不复顾。其莳也若子,其置也若弃,则其天者全,而其性得矣。故吾不害其长而已,非有能硕而茂之也。不抑耗其实而已,非有能蚤而蕃之也。他植者则不然:根拳而土易。其培之也,若不过焉则不及。苟有能反是者,则又爱之太殷,忧之太勤。旦视而暮抚,已去而复顾;甚者爪其肤以验其生枯,摇其本以观其疏密,而木之性日以离矣。虽曰爱之,其实害之;虽曰忧之,其实仇之,故不我若也,吾又何能为哉?”
相传郭橐驼又在种树了,他沿着一条笔直的马路种了3棵树A,B,C。
不过忘记了ABC从左到右的顺序,他只知道B在A的右方 x 步处(如果 x 为负则B在A的左方 -x 步处),C在A的右方 y 步处(如果 y 为负责C在A左方 -y 步处)。
他想知道BC距离多少步(答案一定为正数且不为0)。
因为他种的树太多了,他只知道 |x|, |y| (取绝对值, |1| = 1, |-2| = 2) ≤ 4611686018427387904
Input
第一行是数据组数T(T ≤ 100000)
每组数据两个整数 x , y (-4611686018427387904 ≤ x, y ≤ 4611686018427387904)
Output
Sample Input
2
1 2
4611686018427387904 -4611686018427387904
Sample Output
1
9223372036854775808
#include<stdio.h>
#include<algorithm>
int T ;
typedef long long ll ;
ll x , y ; int main ()
{
//freopen ("a.txt" , "r" , stdin ) ;
scanf ("%d" , &T);
while (T--) {
scanf ("%lld%lld" , &x , &y) ;
if (x < y) std::swap (x , y) ;
if (y < ) {
y = -y ;
printf ("%llu\n" , (unsigned ll) x + y) ;
}
else printf ("%llu\n" , (unsigned ll) x - y) ;
}
return ;
}
因为刚好会有一个答案比long long 多1 , 所以灵活运用unsigned long long 就行了。
acdream.郭式树(数学推导)的更多相关文章
- acdream B - 郭式树 (水题 卡cin,cout, 卡LL)
题目 输入正好是long long的最大, 但是答案超long long 所以用unsigned, 不能用cin cout否则一定超时: 不能用abs(), abs 只用于整数. unsigned ...
- Atitit.变量的定义 获取 储存 物理结构 基本类型简化 隐式转换 类型推导 与底层原理 attilaxDSL
Atitit.变量的定义 获取 储存 物理结构 基本类型简化 隐式转换 类型推导 与底层原理 attilaxDSL 1.1. $ 美元字符, php 黑头1 1.2. 默认变量的范围和声明:1 1.3 ...
- [hdu5307] He is Flying [FFT+数学推导]
题面 传送门 思路 看到这道题,我的第一想法是前缀和瞎搞,说不定能$O\left(n\right)$? 事实证明我的确是瞎扯...... 题目中的提示 这道题的数据中告诉了我们: $sum\left( ...
- ZOJ3329(数学推导+期望递推)
要点: 1.期望的套路,要求n以上的期望,则设dp[i]为i分距离终点的期望步数,则终点dp值为0,答案是dp[0]. 2.此题主要在于数学推导,一方面是要写出dp[i] = 什么,虽然一大串但是思维 ...
- Python的列表推导式,字典推导式,集合推导式使用方法
推导式分为列表推导式(list),字典推导式(dict),集合推导式(set)三种 1.列表推导式也叫列表解析式.功能:是提供一种方便的列表创建方法,所以,列表解析式返回的是一个列表格式:用中括号括起 ...
- 借One-Class-SVM回顾SMO在SVM中的数学推导--记录毕业论文5
上篇记录了一些决策树算法,这篇是借OC-SVM填回SMO在SVM中的数学推导这个坑. 参考文献: http://research.microsoft.com/pubs/69644/tr-98-14.p ...
- 关于不同进制数之间转换的数学推导【Written By KillerLegend】
关于不同进制数之间转换的数学推导 涉及范围:正整数范围内二进制(Binary),八进制(Octonary),十进制(Decimal),十六进制(hexadecimal)之间的转换 数的进制有多种,比如 ...
- python的各种推导式(列表推导式、字典推导式、集合推导式)
推导式comprehensions(又称解析式),是Python的一种独有特性.推导式是可以从一个数据序列构建另一个新的数据序列的结构体. 共有三种推导,在Python2和3中都有支持: 列表(lis ...
- UVA - 10014 - Simple calculations (经典的数学推导题!!)
UVA - 10014 Simple calculations Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & ...
随机推荐
- canvas学习笔记:小小滴公式,大大滴乐趣
声明:本文为原创文章,如需转载,请注明来源WAxes,谢谢! 最近想弄一个网页,把自己学HTML5过程中做的部分DEMO放上去做集合,但是,如果就仅仅做个网页把所有DEMO一个一个排列又觉得太难看了. ...
- Html中metra的含义
from: http://dev.csdn.net/article/60/60902.shtm meta是用来在HTML文档中模拟HTTP协议的响应头报文.meta 标签用于网页的<head&g ...
- Python3常用内置函数
数学相关 abs(a) : 求取绝对值.abs(-1) max(list) : 求取list最大值.max([1,2,3]) min(list) : 求取list最小值.min([1,2,3]) su ...
- 【逆向怎么玩】 动态调试一款牛逼C++ IDE实录
声明 本篇只从逆向兴趣出发,研究其程序运行原理. CLion程序版权为jetBrains所有. 注册码授权为jetBrains及其付费用户所有. 不会释出任何完整的源代码. 涉及能直接推算出注册码的地 ...
- Bootstrap系列 -- 34. 按钮下拉菜单
按钮下拉菜单仅从外观上看和上一节介绍的下拉菜单效果基本上是一样的.不同的是在普通的下拉菜单的基础上封装了按钮(.btn)样式效果.简单点说就是点击一个按钮,会显示隐藏的下拉菜单.按钮下拉菜单其实就是普 ...
- [codevs 1051]接龙游戏(栈)
题目:http://codevs.cn/problem/1051/ 分析: 当然单词查找树是可以的,但这题有更为简便的方法.可以先按字典序排序,然后弄一个栈,如果当前字串可以接到栈顶元素的后面,那么当 ...
- IOS 计算两个经纬度之间的距离
IOS 计算两个经纬度之间的距离 一 丶 -(double)distanceBetweenOrderBy:(double) lat1 :(double) lat2 :(double) lng1 :(d ...
- Easyui使用记录
一天就这搞了这几行. 1. if else 可以嵌套: 2. 子页面调用父页面js,需要使用top.父页面js的方法. <script type="text/javascript&qu ...
- chrom_input_click
<!doctype html> <html> <head> <meta charset="utf-8"> <title> ...
- Java设计模式-工厂方法模式(Factory Method)
工厂方法模式(Factory Method) 工厂模式适合:凡是出现了大量的产品需要创建,并且具有共同的接口时,可以通过工厂方法模式进行创建.在以下的三种模式中,第一种如果传入的字符串有误,不能正确创 ...