HD1385Minimum Transport Cost(Floyd + 输出路径)
Minimum Transport Cost
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 9109 Accepted Submission(s): 2405
The cost of the transportation on the path between these cities, and
a certain tax which will be charged whenever any cargo passing through one city, except for the source and the destination cities.
You must write a program to find the route which has the minimum cost.
The data of path cost, city tax, source and destination cities are given in the input, which is of the form:
a11 a12 ... a1N
a21 a22 ... a2N
...............
aN1 aN2 ... aNN
b1 b2 ... bN
c d
e f
...
g h
where aij is the transport cost from city i to city j, aij = -1 indicates there is no direct path between city i and city j. bi represents the tax of passing through city i. And the cargo is to be delivered from city c to city d, city e to city f, ..., and g = h = -1. You must output the sequence of cities passed by and the total cost which is of the form:
Path: c-->c1-->......-->ck-->d
Total cost : ......
......
From e to f :
Path: e-->e1-->..........-->ek-->f
Total cost : ......
Note: if there are more minimal paths, output the lexically smallest one. Print a blank line after each test case.
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <string.h>
using namespace std;
const int INF = << ;
const int MAX = ;
int n,path[MAX][MAX],dist[MAX][MAX],tax[MAX];
/path[i][j]用来保存 i --> j 的最短路径中 i 的最优后驱(即最近),在Floyd三重循环时,一直更新path。
void Floyd(int n)
{
for(int i = ; i <= n; i++)
{
for(int j = ; j <= n; j++)
path[i][j] = j;
} for(int k = ; k <= n; k++)
{
for(int i = ; i <= n; i++)
{
for(int j = ; j <= n; j++)
{
if(dist[i][k] < INF && dist[k][j] < INF)
{
int temp = dist[i][k] + dist[k][j] + tax[k];
if(temp < dist[i][j])
{
dist[i][j] = temp;
path[i][j] = path[i][k];
}
else if(temp == dist[i][j]) //因为是按照字典序输出路径因此当距离相等时,取路径中最小的那个
{
if(path[i][j] > path[i][k])
path[i][j] = path[i][k];
}
}
}
}
} }
int main()
{
while(scanf("%d", &n) != EOF && n)
{
for(int i = ; i <= n; i++)
{
for(int j = ; j <= n; j++)
{
scanf("%d", &dist[i][j]);
if(dist[i][j] == -)
dist[i][j] = INF;
}
}
for(int i = ; i <= n; i++)
scanf("%d", &tax[i]);
Floyd(n);
int start,goal;
while(scanf("%d%d", &start,&goal) != EOF)
{
if(start == - && goal == -)
break;
printf("From %d to %d :\n",start,goal); int temp = start;
printf("Path: %d",start);
while(temp != goal)
{
printf("-->%d", path[temp][goal]);
temp = path[temp][goal];
}
printf("\n");
/*
int temp = path[start][goal]; //就是这个一直把start和goal当成不会重复的了,脑子啊~
printf("Path: %d",start);
while(temp != goal)
{
printf("-->%d",temp);
temp = path[temp][goal];
}
printf("-->%d\n",goal);
*/
printf("Total cost : %d\n",dist[start][goal]);
printf("\n");
}
}
return ;
}
HD1385Minimum Transport Cost(Floyd + 输出路径)的更多相关文章
- Minimum Transport Cost Floyd 输出最短路
These are N cities in Spring country. Between each pair of cities there may be one transportation tr ...
- hdu 1385 Floyd 输出路径
Floyd 输出路径 Sample Input50 3 22 -1 43 0 5 -1 -122 5 0 9 20-1 -1 9 0 44 -1 20 4 05 17 8 3 1 //收费1 3 // ...
- Minimum Transport Cost(floyd+二维数组记录路径)
Minimum Transport Cost Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/O ...
- hdu 1385 Minimum Transport Cost (Floyd)
Minimum Transport CostTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Ot ...
- ZOJ 1456 Minimum Transport Cost(Floyd算法求解最短路径并输出最小字典序路径)
题目链接: https://vjudge.net/problem/ZOJ-1456 These are N cities in Spring country. Between each pair of ...
- HDU 1385 Minimum Transport Cost (最短路,并输出路径)
题意:给你n个城市,一些城市之间会有一些道路,有边权.并且每个城市都会有一些费用. 然后你一些起点和终点,问你从起点到终点最少需要多少路途. 除了起点和终点,最短路的图中的每个城市的费用都要加上. 思 ...
- hdu 1385 Minimum Transport Cost(floyd && 记录路径)
Minimum Transport Cost Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/O ...
- hdu Minimum Transport Cost(按字典序输出路径)
http://acm.hdu.edu.cn/showproblem.php? pid=1385 求最短路.要求输出字典序最小的路径. spfa:拿一个pre[]记录前驱,不同的是在松弛的时候.要考虑和 ...
- HDU1385 Minimum Transport Cost (Floyd)
Minimum Transport Cost Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/O ...
随机推荐
- 介绍linux下利用编译bash设置root账号共用的权限审计设置
在日常运维工作中,公司不同人员(一般是运维人员)共用root账号登录linux服务器进行维护管理,在不健全的账户权限审计制度下,一旦出现问题,就很难找出源头,甚是麻烦!在此,介绍下利用编译bash使不 ...
- lvm之创建/扩容/缩容/快照及关闭的全部流程操作记录
基本介绍Linux用户安装Linux 操作系统时遇到的一个最常见的难以决定的问题就是如何正确地给评估各分区大小,以分配合适的硬盘空间.随着 Linux的逻辑盘卷管理功能的出现,这些问题都迎刃而解, l ...
- 27Spring_的事务管理_银行转账业务加上事务控制_基于tx.aop进行声明式事务管理
上一篇文章中,银行转账业务没有使用事务,会出现问题,所以这篇文章对上篇文章出现的问题进行修改. 事务 依赖 AOP , AOP需要定义切面, 切面由Advice(通知) 和 PointCut(切点) ...
- javascript限制上传文件大小
在FireFox.Chrome浏览器中可以根据document.getElementById(“id_file”).files[0].size 获取上传文件的大小(字节数)使用的 api是FileRe ...
- cisco交换技术list
- C语言 数组类型与数组指针类型
//数组类型与数组指针类型 #include<stdio.h> #include<stdlib.h> #include<string.h> void main(){ ...
- C语言 文件操作3--文件重定向与扫描
//文件重定向和扫描 #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<stdlib.h> //fprint ...
- GeoServer 常见问题总结
Geoserver安装环境 Geoserver在部署发布服务时,经常会遇到如下问题,现总结如下: 1.忘记了GeoServer Web Admin Page的登陆用户名和密码怎么办? 存储位置:C:\ ...
- 构建高转化率的着陆页-PS+HTML+网络营销
课程简介 本课程是全网独家专业的着陆页课程,课程完整的再现了整个着陆页实战案例的开发过程,包括:策划.设计和实现.上线后的推广.优化及提高转化率的技巧等,本套课程能帮助您迅速掌握着陆页的能力,迅速洞察 ...
- 掌握GCD以及后台永久运行的代码 (使用GCD处理后台线程和UI线程的交互)
一个例子: 在iPhone上做一个下载网页的功能,就是:在iPhone上放一个按钮,单击按钮时,显示一个转动的圆圈,表示正在进行下载,下载完成后,将内容加载到界面上的一个文本控件上. 使用GCD前: ...