线状DP(石子归并)
题意:有N堆石子,现要将石子有序的合并成一堆,规定如下:每次只能移动相邻的2堆石子合并,合并花费为新合成的一堆石子的数量。求将这N堆石子合并成一堆的总花费最小(或最大)。
dp[i][j]为从i到j的最小代价;sum为i到j的和;k用于分割dp[i][j];
动态转移方程为:dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]+sum[i][j]);
#include <iostream>
#include <algorithm>
#include <stdlib.h>
#include <time.h>
#include <cmath>
#include <cstdio>
#include <string>
#include <cstring>
#include <vector>
#include <queue>
#include <stack>
#include <set> #define c_false ios_base::sync_with_stdio(false); cin.tie(0)
#define INF 0x3f3f3f3f
#define INFL 0x3f3f3f3f3f3f3f3f
#define zero_(x,y) memset(x , y , sizeof(x))
#define zero(x) memset(x , 0 , sizeof(x))
#define MAX(x) memset(x , 0x3f ,sizeof(x))
using namespace std ;
#define N 505
typedef long long LL ;
int dp[N][N],sum[N][N],a[N];
int main(){
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
cin>>n;
zero(sum);
zero(dp);
for(int i = ; i <= n; i++) cin>>a[i];
for(int i = ; i < n; i++){
sum[i][i] = a[i];
for(int j = i+; j <= n; j++){
sum[i][j] = sum[i][j-] + a[j];
//printf("%5d%5d%5d\n",i,j,sum[i][j]);
}
}
int j;
for(int len = ; len < n; len++){
for(int i = ; i < n-len+; i++ ){
j = i+len;
dp[i][j] = INF;
for(int k = i; k < j; k++){
dp[i][j] = min(dp[i][j], dp[i][k]+dp[k+][j]+sum[i][j]);
// printf("%5d%5d%5d%5d\n",i,j,len,dp[i][j]);
}
}
}
cout << dp[][n]<<endl;
return ;
}
线状DP(石子归并)的更多相关文章
- 51nod 1021 石子归并(dp)
51nod 1021 石子归并 题解:从i到j合并的最小值:dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+1][j] + sum[j] - sum[i-1]); 最 ...
- 51nod 1021 石子归并 区间DP
1021 石子归并 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 收藏 取消关注 N堆石子摆成一条线.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆 ...
- 51nod 1021 石子归并 【区间DP】
1021 石子归并 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 收藏 关注 N堆石子摆成一条线.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子 ...
- [51nod 1022] 石子归并v2 [dp+四边形不等式优化]
题面: 传送门 思路: 加强版的石子归并,现在朴素的区间dp无法解决问题了 首先我们破环成链,复制一条一样的链并粘贴到原来的链后面,变成一个2n长度的序列,在它上面dp,效率O(8n^3) 显然是过不 ...
- 51nod 1022 石子归并 V2 —— DP四边形不等式优化
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1022 1022 石子归并 V2 基准时间限制:1 秒 空间限 ...
- codevs3002石子归并3(四边形不等式优化dp)
3002 石子归并 3 参考 http://it.dgzx.net/drkt/oszt/zltk/yxlw/dongtai3.htm 时间限制: 1 s 空间限制: 256000 KB 题目等级 ...
- 51 nod 石子归并 + v2 + v3(区间dp,区间dp+平行四边形优化,GarsiaWachs算法)
题意:就是求石子归并. 题解:当范围在100左右是可以之间简单的区间dp,如果范围在1000左右就要考虑用平行四边形优化. 就是多加一个p[i][j]表示在i到j内的取最优解的位置k,注意能使用平行四 ...
- Codevs 3002 石子归并 3(DP四边形不等式优化)
3002 石子归并 3 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 有n堆石子排成一列,每堆石子有一个重量w[i], 每次 ...
- 2017北京网络赛 J Pangu and Stones 区间DP(石子归并)
#1636 : Pangu and Stones 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 In Chinese mythology, Pangu is the fi ...
随机推荐
- Android九宫图(draw9patch)
左边和上边的线决定重复的区域: 右边和下边的线决定显示内容的区域:
- U盘安装ubuntu server 12.04的问题检测不到CDROM的解决
U盘安装ubuntu server 12.04的问题检测不到CDROM的解决 ========================== 我是u盘安装ubuntu 14 64Bit 也是出现同样的问题 用u ...
- V$RMAN_BACKUP_JOB_DETAILS
V$RMAN_BACKUP_JOB_DETAILS展示了rman备份的相关细节.比如,rman备份持续时间.rman备份的执行次数.每一次rman备份工作的状态(failed or completed ...
- eclipse中提示HttpServletRequest不能引用的解决办法
两种解决方法: 1.右键点击项目->Build Path->Add Libraries..->Server Runtime 选择Apache Tomcat v8.0 2.右键点击项目 ...
- Mono addin 学习笔记 5 TypeExtensionPoint
1. Attribute声明方式 定义扩展点: [TypeExtensionPoint]public interface ICommand{ void Run();} 定义扩展: [Ex ...
- 关于sublime text2
转自:http://www.qianduan.net/essential-to-sublime-the-text-2-plugins.html Sublime Text 2是一个轻量.简洁.高效.跨平 ...
- Linux 本人常用到的基本命令
cat -n FileName //查看FileName文件的内容.-n显示对应行号. yum install SoftName //安装软件,切记使用root权限. service //查看服务.例 ...
- 汉诺塔算法详解之C++
汉诺塔: 有三根杆子A,B,C.A杆上有N个(N>1)穿孔圆环,盘的尺寸由下到上依次变小.要求按下列规则将所有圆盘移至C杆: 每次只能移动一个圆盘: 大盘不能叠在小盘上面. 提示:可将圆盘临时置 ...
- 生成API文档的软件
SandCastle:http://shfb.codeplex.com/SourceControl/latest#1952439 HTML Help:http://msdn.microsoft.com ...
- sqoop job 踩过的坑
sqoop 执行可以以job形式 也可以执行用命令执行,再用sqoopjob时,踩了几个坑,分享一下 1.服务器重启 由于服务器增加硬盘,需要重启后,发现sqoop job 无法执行,报连接数据库IO ...