&1 问题来源

  在运行官网的facedetect这个demo的时候,总是不会出来result的图形,电脑右下角提示的错误是“显示器驱动程序已停止响应,而且已恢复 windows 8(R)”。

&2 前期处理

  • 修改代码,各种代码上的调试都尝试过,demo运行失败了;
  • 百度上的禁用视觉效果方案,即修改电脑的主题为“windows 经典”主题,demo运行失败了;
  • 百度上的重新安装显卡驱动方案,即重新装集成网卡驱动,导致显示器黑屏,倒腾了一天才整回来,失败;

&3 成功解决

  首先,打开注册表,找到HKEY_LOCAL_MACHINE,在SYSTEM中的CurrentControlSet中的Control的GrphicsDrivers上面点击右键,新建QEORD(64位)值(Q),数值名称为:TdrDelay,数值数据为:8,基数不用改变,选择十六进制即可。

  

  然后,在你的项目编译文件夹内加入四个文件,haarcascade_eye_tree_eyeglasses.xml和haarcascade_frontalface_alt.xml、opencv_ffmpeg310_64.dll及opencv_world310d.dll;

  

  在opencv的环境配置中,(前面有博文介绍),去掉可执行文件目录,去掉附加依赖项的opencv_world310.lib,至此,所有的环境配置方面已经完成。

&4 demo的代码和运行结果

注意:在opencv安装文件夹sources\samples\cpp中的文件facedetect.cpp即是源代码。

 #include "opencv2/objdetect.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream> using namespace std;
using namespace cv; static void help() {
  cout << "\nThis program demonstrates the cascade recognizer. Now you can use Haar or LBP features.\n"
  "This classifier can recognize many kinds of rigid objects, once the appropriate classifier is trained.\n"
  "It's most known use is for faces.\n"
  "Usage:\n"
  "./facedetect [--cascade=<cascade_path> this is the primary trained classifier such as frontal face]\n"
  " [--nested-cascade[=nested_cascade_path this an optional secondary classifier such as eyes]]\n"
  " [--scale=<image scale greater or equal to 1, try 1.3 for example>]\n"
  " [--try-flip]\n"
  " [filename|camera_index]\n\n"
  "see facedetect.cmd for one call:\n"
  "./facedetect --cascade=\"../../data/haarcascades/haarcascade_frontalface_alt.xml\" --nested-cascade=\"../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml\" --scale=1.3\n\n"
  "During execution:\n\tHit any key to quit.\n"
  "\tUsing OpenCV version " << CV_VERSION << "\n" << endl;
} void detectAndDraw(Mat& img, CascadeClassifier& cascade,
CascadeClassifier& nestedCascade,
double scale, bool tryflip); string cascadeName;
string nestedCascadeName; int main(int argc, const char** argv)
{
  VideoCapture capture;
  Mat frame, image;
  string inputName;
  bool tryflip;
  CascadeClassifier cascade, nestedCascade;
  double scale;   cv::CommandLineParser parser(argc, argv,
    "{help h||}"
    "{cascade|haarcascade_frontalface_alt.xml|}"
    "{nested-cascade|haarcascade_eye_tree_eyeglasses.xml|}"
    "{scale|1|}{try-flip||}{@filename|lena.jpg|}"
  );   if (parser.has("help"))
  {
    help();
    return ;
  }
  cascadeName = parser.get<string>("cascade");
  nestedCascadeName = parser.get<string>("nested-cascade");
  scale = parser.get<double>("scale");
  if (scale < )
    scale = ;
  tryflip = parser.has("try-flip");
  inputName = parser.get<string>("@filename");
  if (!parser.check())
  {
    parser.printErrors();
    return ;
  }
  if (!nestedCascade.load(nestedCascadeName))
    cerr << "WARNING: Could not load classifier cascade for nested objects" << endl;
  if (!cascade.load(cascadeName))
  {
    cerr << "ERROR: Could not load classifier cascade" << endl;
    help();
    return -;
  }
  if (inputName.empty() || (isdigit(inputName[]) && inputName.size() == ))
  {
    int c = inputName.empty() ? : inputName[] - '';
    if (!capture.open(c))
    cout << "Capture from camera #" << c << " didn't work" << endl;
  }
  else if (inputName.size())
  {
    image = imread(inputName, );
    if (image.empty())
    {
      if (!capture.open(inputName))
      cout << "Could not read " << inputName << endl;
    }
  }
  else
  {
    image = imread("../data/lena.jpg", );
    if (image.empty()) cout << "Couldn't read ../data/lena.jpg" << endl;
  }   if (capture.isOpened())
  {
    cout << "Video capturing has been started ..." << endl;     for (;;)
    {
      capture >> frame;
      if (frame.empty())
      break;       Mat frame1 = frame.clone();
      detectAndDraw(frame1, cascade, nestedCascade, scale, tryflip);       int c = waitKey();
      if (c == || c == 'q' || c == 'Q')
      break;
    }
  }
  else
  {
    cout << "Detecting face(s) in " << inputName << endl;
    if (!image.empty())
    {
      detectAndDraw(image, cascade, nestedCascade, scale, tryflip);
      waitKey();
    }
  else if (!inputName.empty())
  {
    /* assume it is a text file containing the
    list of the image filenames to be processed - one per line */
    FILE* f = fopen(inputName.c_str(), "rt");
    if (f)
    {
      char buf[ + ];
      while (fgets(buf, , f))
      {
        int len = (int)strlen(buf), c;
        while (len > && isspace(buf[len - ]))
        len--;
        buf[len] = '\0';
        cout << "file " << buf << endl;
        image = imread(buf, );
        if (!image.empty())
        {
          detectAndDraw(image, cascade, nestedCascade, scale, tryflip);
          c = waitKey();
          if (c == || c == 'q' || c == 'Q')
            break;
        }
        else
        {
          cerr << "Aw snap, couldn't read image " << buf << endl;
        }
      }
    fclose(f);
    }
  }
} return ;
} void detectAndDraw(Mat& img, CascadeClassifier& cascade,
CascadeClassifier& nestedCascade,
double scale, bool tryflip)
{
double t = ;
vector<Rect> faces, faces2;
const static Scalar colors[] =
{
Scalar(, , ),
Scalar(, , ),
Scalar(, , ),
Scalar(, , ),
Scalar(, , ),
Scalar(, , ),
Scalar(, , ),
Scalar(, , )
};
Mat gray, smallImg; cvtColor(img, gray, COLOR_BGR2GRAY);
double fx = / scale;
resize(gray, smallImg, Size(), fx, fx, INTER_LINEAR);
equalizeHist(smallImg, smallImg); t = (double)cvGetTickCount();
cascade.detectMultiScale(smallImg, faces,
1.1, ,
//|CASCADE_FIND_BIGGEST_OBJECT
//|CASCADE_DO_ROUGH_SEARCH
| CASCADE_SCALE_IMAGE,
Size(, ));
if (tryflip)
{
flip(smallImg, smallImg, );
cascade.detectMultiScale(smallImg, faces2,
1.1, ,
//|CASCADE_FIND_BIGGEST_OBJECT
//|CASCADE_DO_ROUGH_SEARCH
| CASCADE_SCALE_IMAGE,
Size(, ));
for (vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); r++)
{
faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height));
}
}
t = (double)cvGetTickCount() - t;
printf("detection time = %g ms\n", t / ((double)cvGetTickFrequency()*.));
for (size_t i = ; i < faces.size(); i++)
{
Rect r = faces[i];
Mat smallImgROI;
vector<Rect> nestedObjects;
Point center;
Scalar color = colors[i % ];
int radius; double aspect_ratio = (double)r.width / r.height;
if (0.75 < aspect_ratio && aspect_ratio < 1.3)
{
center.x = cvRound((r.x + r.width*0.5)*scale);
center.y = cvRound((r.y + r.height*0.5)*scale);
radius = cvRound((r.width + r.height)*0.25*scale);
circle(img, center, radius, color, , , );
}
else
rectangle(img, cvPoint(cvRound(r.x*scale), cvRound(r.y*scale)),
cvPoint(cvRound((r.x + r.width - )*scale), cvRound((r.y + r.height - )*scale)),
color, , , );
if (nestedCascade.empty())
continue;
smallImgROI = smallImg(r);
nestedCascade.detectMultiScale(smallImgROI, nestedObjects,
1.1, ,
//|CASCADE_FIND_BIGGEST_OBJECT
//|CASCADE_DO_ROUGH_SEARCH
//|CASCADE_DO_CANNY_PRUNING
| CASCADE_SCALE_IMAGE,
Size(, ));
for (size_t j = ; j < nestedObjects.size(); j++)
{
Rect nr = nestedObjects[j];
center.x = cvRound((r.x + nr.x + nr.width*0.5)*scale);
center.y = cvRound((r.y + nr.y + nr.height*0.5)*scale);
radius = cvRound((nr.width + nr.height)*0.25*scale);
circle(img, center, radius, color, , , );
}
}
imshow("result", img);
}

facedetect源码

结果:

OpenCV人脸检测demo--facedetect的更多相关文章

  1. 【AdaBoost算法】基于OpenCV实现人脸检测Demo

    一.关于检测算法 分类器训练: 通过正样本与负样本训练可得到分类器,opencv有编译好的训练Demo,按要求训练即可生成,这里我们直接使用其已经训练好的分类器检测: 检测过程: 检测过程很简单,可以 ...

  2. keras系列︱人脸表情分类与识别:opencv人脸检测+Keras情绪分类(四)

    引自:http://blog.csdn.net/sinat_26917383/article/details/72885715 人脸识别热门,表情识别更加.但是表情识别很难,因为人脸的微表情很多,本节 ...

  3. opencv人脸检测分类器训练小结

    这两天在初学目标检测的算法及步骤,其中人脸检测作为最经典的算法,于是进行了重点研究.该算法最重要的是建立人脸检测分类器,因此我用了一天的时间来学习分类器的训练.这方面的资料很多,但是能按照一个资料运行 ...

  4. Android+openCV人脸检测2(静态图片)

    前几篇文章中有提到对openCV环境配置,这里再重新梳理导入和使用openCV进行简单的人脸检测(包括使用级联分类器) 一 首先导入openCVLibrary320 二 设置gradle的sdk版本号 ...

  5. opencv人脸检测,旋转处理

    年会签到,拍自己的大头照,有的人可能会拍成横向的,需要旋转,用人脸检测并修正它(图片). 1. 无脑检测步骤为: 1. opencv 读取图片,灰度转换 2. 使用CascadeClassifier( ...

  6. OpenCV人脸检测并把图片写成avi视频

    读出某一个文件夹下“jpg”后缀的全部图片后,用的OpenCV自带的人脸检测检测图片中的人脸,调整图片的大小写成一个avi视频. 主要是要记录一下CvVideoWriter的用法和如何从文件夹中读取某 ...

  7. 人脸检测学习笔记(数据集-DLIB人脸检测原理-DLIB&OpenCV人脸检测方法及对比)

    1.Easily Create High Quality Object Detectors with Deep Learning 2016/10/11 http://blog.dlib.net/201 ...

  8. OpenCV——人脸检测

    OpenCV支持的目标检测的方法: 利用样本的Haar特征进行的分类器训练,得到的级联boosted分类器(Cascade Classification) 1.加载级联分类器 CascadeClass ...

  9. OpenCV: OpenCV人脸检测框可信度排序

    参考文章:http://blog.csdn.net/hua_007/article/details/45368607 使用OpenCV进行人脸识别时,使用 casecade.detectMultiSc ...

随机推荐

  1. Web应用程序系统的多用户权限控制设计及实现-项目架构【3】

    本章主要讲述Web权限管理系统的项目架构,及开发中需要的基本类和相关的CSS,JS文件. 1.1系统结构 本系统搭建开发工具为Visual Studio 2012,采用ASP.NET MVC 4.0技 ...

  2. 网络开始---多线程---GCD-01-基本使用(掌握)(六)

    /** GCD两个核心概念:任何和队列 任务:执行什么操作 队列:用来存放任务 使用就2个步骤 1.定制任务 2.将任务添加到队列中 任务的取出队列原则:FIFO原则: 先进先出,后进后出 */ #i ...

  3. Swift的7大误区

    Swift正在完成一个惊人的壮举,它正在改变我们在苹果设备上编程的方式,引入了很多现代范例,例如:函数式编程和相比于OC这种纯面向对象语言更丰富的类型检查. Swift语言希望通过采用安全的编程模式去 ...

  4. iOS开发之保存照片到自己创建的相簿

    iOS开发之保存照片到自己创建的相簿 保存照片还可以用ALAssetsLibrary,ALAssetsLibrary提供了我们对iOS设备中的相片.视频的访问,是连接应用程序和相册之间访问的一个桥梁. ...

  5. IOS之KVC和KVO(未完待续)

    *:first-child { margin-top: 0 !important; } body > *:last-child { margin-bottom: 0 !important; } ...

  6. Objective-C之@类别小实例

    *:first-child { margin-top: 0 !important; } body > *:last-child { margin-bottom: 0 !important; } ...

  7. 小波说雨燕 第三季 构建 swift UI 之 UI组件集-视图集(三)Activity Indicators视图 学习笔记

    当我们应用程序执行一个比较耗时的操作,我们需要给用户一个提示,那么这个提示比较好的方式方法呢就是  进度条  或者  一个齿轮转.我们就需要Activity Indicators组件 Indicato ...

  8. 单元测试_JUnit4的应用与实践

    本文实例为:JUnit4+Eclipse+CVS的实践 目录 1.测试环境搭建 1.1 JDK安装部署 1.2 Eclipse安装部署 1.3 Eclipse添加JUnit4 1.4 CVS项目文件引 ...

  9. InfluxDB数据备份与恢复

    数据备份与恢复 Example:(192.167.8.13 InfluxDB:DeviceHistory备份到192.167.8.52,然后恢复到该服务器上)   steps:   login 192 ...

  10. java web项目自动部署到Tomcat的原因

    关于eclipse中MAVEN WEB工程中编译问题 这几天是被java的环境搞疯了,我先是搭了一个spring+springmvc+mybatis的工程,在家里跑了一下,没有问题,把工程带到公司里用 ...