OpenCV人脸检测demo--facedetect
&1 问题来源
在运行官网的facedetect这个demo的时候,总是不会出来result的图形,电脑右下角提示的错误是“显示器驱动程序已停止响应,而且已恢复 windows 8(R)”。
&2 前期处理
- 修改代码,各种代码上的调试都尝试过,demo运行失败了;
- 百度上的禁用视觉效果方案,即修改电脑的主题为“windows 经典”主题,demo运行失败了;
- 百度上的重新安装显卡驱动方案,即重新装集成网卡驱动,导致显示器黑屏,倒腾了一天才整回来,失败;
&3 成功解决
首先,打开注册表,找到HKEY_LOCAL_MACHINE,在SYSTEM中的CurrentControlSet中的Control的GrphicsDrivers上面点击右键,新建QEORD(64位)值(Q),数值名称为:TdrDelay,数值数据为:8,基数不用改变,选择十六进制即可。

然后,在你的项目编译文件夹内加入四个文件,haarcascade_eye_tree_eyeglasses.xml和haarcascade_frontalface_alt.xml、opencv_ffmpeg310_64.dll及opencv_world310d.dll;

在opencv的环境配置中,(前面有博文介绍),去掉可执行文件目录,去掉附加依赖项的opencv_world310.lib,至此,所有的环境配置方面已经完成。
&4 demo的代码和运行结果
注意:在opencv安装文件夹sources\samples\cpp中的文件facedetect.cpp即是源代码。
#include "opencv2/objdetect.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream> using namespace std;
using namespace cv; static void help() {
cout << "\nThis program demonstrates the cascade recognizer. Now you can use Haar or LBP features.\n"
"This classifier can recognize many kinds of rigid objects, once the appropriate classifier is trained.\n"
"It's most known use is for faces.\n"
"Usage:\n"
"./facedetect [--cascade=<cascade_path> this is the primary trained classifier such as frontal face]\n"
" [--nested-cascade[=nested_cascade_path this an optional secondary classifier such as eyes]]\n"
" [--scale=<image scale greater or equal to 1, try 1.3 for example>]\n"
" [--try-flip]\n"
" [filename|camera_index]\n\n"
"see facedetect.cmd for one call:\n"
"./facedetect --cascade=\"../../data/haarcascades/haarcascade_frontalface_alt.xml\" --nested-cascade=\"../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml\" --scale=1.3\n\n"
"During execution:\n\tHit any key to quit.\n"
"\tUsing OpenCV version " << CV_VERSION << "\n" << endl;
} void detectAndDraw(Mat& img, CascadeClassifier& cascade,
CascadeClassifier& nestedCascade,
double scale, bool tryflip); string cascadeName;
string nestedCascadeName; int main(int argc, const char** argv)
{
VideoCapture capture;
Mat frame, image;
string inputName;
bool tryflip;
CascadeClassifier cascade, nestedCascade;
double scale; cv::CommandLineParser parser(argc, argv,
"{help h||}"
"{cascade|haarcascade_frontalface_alt.xml|}"
"{nested-cascade|haarcascade_eye_tree_eyeglasses.xml|}"
"{scale|1|}{try-flip||}{@filename|lena.jpg|}"
); if (parser.has("help"))
{
help();
return ;
}
cascadeName = parser.get<string>("cascade");
nestedCascadeName = parser.get<string>("nested-cascade");
scale = parser.get<double>("scale");
if (scale < )
scale = ;
tryflip = parser.has("try-flip");
inputName = parser.get<string>("@filename");
if (!parser.check())
{
parser.printErrors();
return ;
}
if (!nestedCascade.load(nestedCascadeName))
cerr << "WARNING: Could not load classifier cascade for nested objects" << endl;
if (!cascade.load(cascadeName))
{
cerr << "ERROR: Could not load classifier cascade" << endl;
help();
return -;
}
if (inputName.empty() || (isdigit(inputName[]) && inputName.size() == ))
{
int c = inputName.empty() ? : inputName[] - '';
if (!capture.open(c))
cout << "Capture from camera #" << c << " didn't work" << endl;
}
else if (inputName.size())
{
image = imread(inputName, );
if (image.empty())
{
if (!capture.open(inputName))
cout << "Could not read " << inputName << endl;
}
}
else
{
image = imread("../data/lena.jpg", );
if (image.empty()) cout << "Couldn't read ../data/lena.jpg" << endl;
} if (capture.isOpened())
{
cout << "Video capturing has been started ..." << endl; for (;;)
{
capture >> frame;
if (frame.empty())
break; Mat frame1 = frame.clone();
detectAndDraw(frame1, cascade, nestedCascade, scale, tryflip); int c = waitKey();
if (c == || c == 'q' || c == 'Q')
break;
}
}
else
{
cout << "Detecting face(s) in " << inputName << endl;
if (!image.empty())
{
detectAndDraw(image, cascade, nestedCascade, scale, tryflip);
waitKey();
}
else if (!inputName.empty())
{
/* assume it is a text file containing the
list of the image filenames to be processed - one per line */
FILE* f = fopen(inputName.c_str(), "rt");
if (f)
{
char buf[ + ];
while (fgets(buf, , f))
{
int len = (int)strlen(buf), c;
while (len > && isspace(buf[len - ]))
len--;
buf[len] = '\0';
cout << "file " << buf << endl;
image = imread(buf, );
if (!image.empty())
{
detectAndDraw(image, cascade, nestedCascade, scale, tryflip);
c = waitKey();
if (c == || c == 'q' || c == 'Q')
break;
}
else
{
cerr << "Aw snap, couldn't read image " << buf << endl;
}
}
fclose(f);
}
}
} return ;
} void detectAndDraw(Mat& img, CascadeClassifier& cascade,
CascadeClassifier& nestedCascade,
double scale, bool tryflip)
{
double t = ;
vector<Rect> faces, faces2;
const static Scalar colors[] =
{
Scalar(, , ),
Scalar(, , ),
Scalar(, , ),
Scalar(, , ),
Scalar(, , ),
Scalar(, , ),
Scalar(, , ),
Scalar(, , )
};
Mat gray, smallImg; cvtColor(img, gray, COLOR_BGR2GRAY);
double fx = / scale;
resize(gray, smallImg, Size(), fx, fx, INTER_LINEAR);
equalizeHist(smallImg, smallImg); t = (double)cvGetTickCount();
cascade.detectMultiScale(smallImg, faces,
1.1, ,
//|CASCADE_FIND_BIGGEST_OBJECT
//|CASCADE_DO_ROUGH_SEARCH
| CASCADE_SCALE_IMAGE,
Size(, ));
if (tryflip)
{
flip(smallImg, smallImg, );
cascade.detectMultiScale(smallImg, faces2,
1.1, ,
//|CASCADE_FIND_BIGGEST_OBJECT
//|CASCADE_DO_ROUGH_SEARCH
| CASCADE_SCALE_IMAGE,
Size(, ));
for (vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); r++)
{
faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height));
}
}
t = (double)cvGetTickCount() - t;
printf("detection time = %g ms\n", t / ((double)cvGetTickFrequency()*.));
for (size_t i = ; i < faces.size(); i++)
{
Rect r = faces[i];
Mat smallImgROI;
vector<Rect> nestedObjects;
Point center;
Scalar color = colors[i % ];
int radius; double aspect_ratio = (double)r.width / r.height;
if (0.75 < aspect_ratio && aspect_ratio < 1.3)
{
center.x = cvRound((r.x + r.width*0.5)*scale);
center.y = cvRound((r.y + r.height*0.5)*scale);
radius = cvRound((r.width + r.height)*0.25*scale);
circle(img, center, radius, color, , , );
}
else
rectangle(img, cvPoint(cvRound(r.x*scale), cvRound(r.y*scale)),
cvPoint(cvRound((r.x + r.width - )*scale), cvRound((r.y + r.height - )*scale)),
color, , , );
if (nestedCascade.empty())
continue;
smallImgROI = smallImg(r);
nestedCascade.detectMultiScale(smallImgROI, nestedObjects,
1.1, ,
//|CASCADE_FIND_BIGGEST_OBJECT
//|CASCADE_DO_ROUGH_SEARCH
//|CASCADE_DO_CANNY_PRUNING
| CASCADE_SCALE_IMAGE,
Size(, ));
for (size_t j = ; j < nestedObjects.size(); j++)
{
Rect nr = nestedObjects[j];
center.x = cvRound((r.x + nr.x + nr.width*0.5)*scale);
center.y = cvRound((r.y + nr.y + nr.height*0.5)*scale);
radius = cvRound((nr.width + nr.height)*0.25*scale);
circle(img, center, radius, color, , , );
}
}
imshow("result", img);
}
facedetect源码
结果:

OpenCV人脸检测demo--facedetect的更多相关文章
- 【AdaBoost算法】基于OpenCV实现人脸检测Demo
一.关于检测算法 分类器训练: 通过正样本与负样本训练可得到分类器,opencv有编译好的训练Demo,按要求训练即可生成,这里我们直接使用其已经训练好的分类器检测: 检测过程: 检测过程很简单,可以 ...
- keras系列︱人脸表情分类与识别:opencv人脸检测+Keras情绪分类(四)
引自:http://blog.csdn.net/sinat_26917383/article/details/72885715 人脸识别热门,表情识别更加.但是表情识别很难,因为人脸的微表情很多,本节 ...
- opencv人脸检测分类器训练小结
这两天在初学目标检测的算法及步骤,其中人脸检测作为最经典的算法,于是进行了重点研究.该算法最重要的是建立人脸检测分类器,因此我用了一天的时间来学习分类器的训练.这方面的资料很多,但是能按照一个资料运行 ...
- Android+openCV人脸检测2(静态图片)
前几篇文章中有提到对openCV环境配置,这里再重新梳理导入和使用openCV进行简单的人脸检测(包括使用级联分类器) 一 首先导入openCVLibrary320 二 设置gradle的sdk版本号 ...
- opencv人脸检测,旋转处理
年会签到,拍自己的大头照,有的人可能会拍成横向的,需要旋转,用人脸检测并修正它(图片). 1. 无脑检测步骤为: 1. opencv 读取图片,灰度转换 2. 使用CascadeClassifier( ...
- OpenCV人脸检测并把图片写成avi视频
读出某一个文件夹下“jpg”后缀的全部图片后,用的OpenCV自带的人脸检测检测图片中的人脸,调整图片的大小写成一个avi视频. 主要是要记录一下CvVideoWriter的用法和如何从文件夹中读取某 ...
- 人脸检测学习笔记(数据集-DLIB人脸检测原理-DLIB&OpenCV人脸检测方法及对比)
1.Easily Create High Quality Object Detectors with Deep Learning 2016/10/11 http://blog.dlib.net/201 ...
- OpenCV——人脸检测
OpenCV支持的目标检测的方法: 利用样本的Haar特征进行的分类器训练,得到的级联boosted分类器(Cascade Classification) 1.加载级联分类器 CascadeClass ...
- OpenCV: OpenCV人脸检测框可信度排序
参考文章:http://blog.csdn.net/hua_007/article/details/45368607 使用OpenCV进行人脸识别时,使用 casecade.detectMultiSc ...
随机推荐
- UIScrollView常见属性
什么是UIScrollView •设备的屏幕大小是极其有限的,因此直接展示在用户眼前的内容也相当有限 • •当展示的内容较多,超出一个屏幕时,用户可通过滚动手势来查看屏幕以外的内容 • •普通的UIV ...
- 网络开始---多线程---NSThread-01-基本使用(了解)(二)
#import "HMViewController.h" @interface HMViewController () @end @implementation HMViewCon ...
- Android网络编程基础
Android网络编程只TCP通信 TCP 服务器端工作的主要步骤如下.步骤1 调用ServerSocket(int port)创建一个ServerSocket,并绑定到指定端口上.步骤2 调用acc ...
- 【文章内容来自《Android 应用程序开发权威指南》(第四版)】如何设计兼容的用户界面的一些建议(有删改)
最近一直在看的一本书是<Android 应用程序开发权威指南>(第四版),十分推荐.书中讲到了一些用户界面设计的规范,对于初学者我认为十分有必要,在这里码给大家,希望对我们都有用. 在我们 ...
- android 之 桌面的小控件AppWidget
AppWidget是创建的桌面窗口小控件,在这个小控件上允许我们进行一些操作(这个视自己的需要而定).作为菜鸟,我在这里将介绍一下AppWeight的简单使用. 1.在介绍AppWidget之前,我们 ...
- UVa 111 - History Grading (by 最长公共子序列 )
History Grading Background Many problems in Computer Science involve maximizing some measure accor ...
- Effective Java 48 Avoid float and double if exact answers are required
Reason The float and double types are particularly ill-suited for monetary calculations because it i ...
- Effective Java 50 Avoid strings where other types are more appropriate
Principle Strings are poor substitutes for other value types. Such as int, float or BigInteger. Stri ...
- JavaScript Patterns 3.4 Array Literal
Array Literal Syntax To avoid potential errors when creating dynamic arrays at runtime, it's much sa ...
- C#.net Winform获取文件路径
C# 获取路径 string str1 =Process.GetCurrentProcess().MainModule.FileName;//获得当前执行的exe的文件名.string str2=En ...