本文作者:hhh5460

大数据分析,内存不够用怎么办?

当然,你可以升级你的电脑为超级电脑。

另外,你也可以采用硬盘操作。

本文示范了硬盘操作的一种可能的方式。

本文基于:win10(64) + py3.5

本人电脑配置:4G内存

说明:

数据大小:5.6G

数据描述:自2010年以来,纽约的311投诉

数据来源:纽约开放数据官网(NYC's open data portal)

数据下载:https://data.cityofnewyork.us/api/views/erm2-nwe9/rows.csv?accessType=DOWNLOAD

import pandas as pd
import time '''python大数据分析工作流程'''
# 5G大数据文件,csv格式
reader = pd.read_csv('311_Service_Requests_from_2010_to_Present.csv', iterator=True, encoding='utf-8') # HDF5格式文件支持硬盘操作,不需要全部读入内存
store = pd.HDFStore('311_Service_Requests_from_2010_to_Present.h5') # 然后用迭代的方式转换.csv格式为.h5格式
chunkSize = 100000
i = 0
while True:
try:
start = time.clock() # 从csv文件迭代读取
df = reader.get_chunk(chunkSize) # 去除列名中的空格
df = df.rename(columns={c: c.replace(' ', '') for c in df.columns}) # 转换为日期时间格式
df['CreatedDate'] = pd.to_datetime(df['CreatedDate'])
df['ClosedDate'] = pd.to_datetime(df['ClosedDate']) # 感兴趣的列
columns = ['Agency', 'CreatedDate', 'ClosedDate', 'ComplaintType',
'Descriptor', 'TimeToCompletion', 'City']
# 不感兴趣的列
columns_for_drop = list(set(df.columns) - set(columns))
df.drop(columns_for_drop, inplace=True, axis=1, errors='ignore') # 转到h5文件
# 通过指定data_columns,建立额外的索引器,可提升查询速度
store.append('df', df, data_columns = ['ComplaintType', 'Descriptor', 'Agency']) # 计时
i += 1
end = time.clock()
print('{} 秒: completed {} rows'.format(end - start, i * chunksize))
except StopIteration:
print("Iteration is stopped.")
break # 转换完成之后,就可以选出想要进行数据分析的行,将其从硬盘导入到内存,如:
# 导入前三行
#store.select('df', "index<3") # 导入 ComplaintType, Descriptor, Agency这三列的前十行
#store.select('df', "index<10 & columns=['ComplaintType', 'Descriptor', 'Agency']") # 导入 ComplaintType, Descriptor, Agency这三列中满足Agency=='NYPD'的前十行
#store.select('df', "columns=['ComplaintType', 'Descriptor', 'Agency'] & Agency=='NYPD'").head(10) # 导入 ComplaintType, Descriptor, Agency这三列中满足Agency IN ('NYPD', 'DOB')的前十行
#store.select('df', "columns=['ComplaintType', 'Descriptor', 'Agency'] & Agency IN ('NYPD', 'DOB')")[:10] # ======================================
# 下面示范一个groupby操作
# 说明:由于数据太大,远超内存。因此无法全部导入内存。
# ======================================
# 硬盘操作:导入所有的 City 名称
cities = store.select_column('df','City').unique()
print("\ngroups:%s" % cities) # 循环读取 city
groups = []
for city in cities:
# 硬盘操作:按City名称选取
group = store.select('df', 'City=%s' % city) # 这里进行你想要的数据处理
groups.append(group[['ComplaintType', 'Descriptor', 'Agency']].sum()) print("\nresult:\n%s" % pd.concat(groups, keys = cities)) # 最后,记得关闭
store.close()

附:

运行过程中出现了一个错误

把上面的:

# 转到h5文件
# 通过指定data_columns,建立额外的索引器
store.append('df', df, data_columns = ['ComplaintType', 'Descriptor', 'Agency'])

改为:

# 转到h5文件
# 通过指定data_columns,建立额外的索引器
# 通过指定min_itemsize,设定存储混合类型长度
store.append('df', df, data_columns = ['ComplaintType', 'Descriptor', 'Agency'], min_itemsize = {'values': 50})

关于min_itemsize详情,见:http://pandas.pydata.org/pandas-docs/stable/io.html#storing-types

参考:

https://plot.ly/python/big-data-analytics-with-pandas-and-sqlite/

http://stackoverflow.com/questions/14262433/large-data-work-flows-using-pandas

http://python.jobbole.com/84118/

python大数据工作流程的更多相关文章

  1. 《零起点,python大数据与量化交易》

    <零起点,python大数据与量化交易>,这应该是国内第一部,关于python量化交易的书籍. 有出版社约稿,写本量化交易与大数据的书籍,因为好几年没写书了,再加上近期"前海智库 ...

  2. 零起点Python大数据与量化交易

    零起点Python大数据与量化交易 第1章 从故事开始学量化 1 1.1 亿万富翁的“神奇公式” 2 1.1.1 案例1-1:亿万富翁的“神奇公式” 2 1.1.2 案例分析:Python图表 5 1 ...

  3. 学习推荐《零起点Python大数据与量化交易》中文PDF+源代码

    学习量化交易推荐学习国内关于Python大数据与量化交易的原创图书<零起点Python大数据与量化交易>. 配合zwPython开发平台和zwQuant开源量化软件学习,是一套完整的大数据 ...

  4. Python大数据与机器学习之NumPy初体验

    本文是Python大数据与机器学习系列文章中的第6篇,将介绍学习Python大数据与机器学习所必须的NumPy库. 通过本文系列文章您将能够学到的知识如下: 应用Python进行大数据与机器学习 应用 ...

  5. Cookie&Seesion会话 共享数据 工作流程 持久化 Servlet三个作用域 会话机制

    Day37 Cookie&Seesion会话 1.1.1 什么是cookie 当用户通过浏览器访问Web服务器时,服务器会给客户端发送一些信息,这些信息都保存在Cookie中.这样,当该浏览器 ...

  6. 零基础入门到精通:Python大数据与机器学习之Pandas-数据操作

    在这里还是要推荐下我自己建的Python开发学习群:483546416,群里都是学Python开发的,如果你正在学习Python ,小编欢迎你加入,大家都是软件开发党,不定期分享干货(只有Python ...

  7. python大数据

    http://blog.csdn.net/xnby/article/details/50782913 一句话总结:spark是一个基于内存的大数据计算框架, 上层包括了:Spark SQL类似Hive ...

  8. Python大数据应用

    一.三国演义人物出场统计 先检查安装包 1.jieba库基本介绍 (1)jieba库概述 jieba是优秀的中文分词第三方库 中文文本需要通过分词获得单个的词语 jieba是优秀的中文分词第三方库,需 ...

  9. seo与python大数据结合给文本分词并提取高频词

    最近研究seo和python如何结合,参考网上的一些资料,写的这个程序. 目的:分析某个行业(例如:圆柱模板)用户最关心的一些词,根据需求去自动调整TDK,以及栏目,内容页的规划 使用方法: 1.下载 ...

随机推荐

  1. Swift面向对象基础(上)——Swift中的类和结构体(上)

    学习来自<极客学院> import Foundation //1.定义类和结构体 /* [修饰符]calss 类名{ 零到多个构造器 零到多个属性 零到多个方法 零到多个下标 } 修饰符可 ...

  2. UNIX/Linux下C语言的学习路线

    一.工具篇 “公欲善其事,必先利其器”.编程是一门实践性很强的工作,在你以后的学习或工作中,你将常常会与以下工具打交道, 下面列出学习C语言编程常常用到的软件和工具. 1.操作系统    在UNIX或 ...

  3. socket服务器开发中的SO_REUSEADDR选项与让人心烦的TIME_WAIT

    1 发现问题 我在开发一个socket服务器程序并反复调试的时候,发现了一个让人无比心烦的情况:每次kill掉该服务器进程并重新启动的时候,都会出现bind错误:error:98,Address al ...

  4. python lambda表达式简单用法

    习条件运算时,对于简单的 if else 语句,可以使用三元运算来表示,即: 1 2 3 4 5 6 7 8 # 普通条件语句 if 1 == 1:     name = 'wupeiqi' else ...

  5. html点击按钮 弹出 多选择窗口级联下拉复选

    参考代码 代码示例1: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http:/ ...

  6. linux 删除已输入的命令行

    ctrl + w —往前删除一个单词,光标放在最末尾ctrl + k —删除到末尾,光标放在最前面(可以使用ctrl+a) —————————————————————-华丽的分割线ctl + u 删除 ...

  7. OpenSSH后门获取root密码及防范

    OpenSSH后门获取root密码及防范 相对于Windows操作系统,Linux操作系统的密码较难获取.而很多Linux服务器都配置了Openssh服务,在获取root权限的情况下,可以通过修改或者 ...

  8. 广度优先搜索 codevs 2806 红与黑

    codevs 2806 红与黑  时间限制: 1 s  空间限制: 64000 KB  题目等级 : 白银 Silver   题目描述 Description 有一个矩形房间,覆盖正方形瓷砖.每块瓷砖 ...

  9. hihoCoder #1388 : Periodic Signal ( 2016 acm 北京网络赛 F题)

    时间限制:5000ms 单点时限:5000ms 内存限制:256MB 描述 Profess X is an expert in signal processing. He has a device w ...

  10. [翻译]为你的服务器选择正确的.NET

    英文原文 By Daniel Roth ASP.NET 5 is based on the .NET Execution Environment (DNX), which supports runni ...