ZOJ Problem Set - 2676
 
 
 
 
Network Wars

Time Limit: 5 Seconds      Memory Limit: 32768 KB      Special Judge

Network of Byteland consists of n servers, connected by m optical cables. Each cable connects two servers and can transmit data in both directions. Two servers of the network are especially important --- they are connected to global world network and president palace network respectively.

The server connected to the president palace network has number 1, and the server connected to the global world network has number n.

Recently the company Max Traffic has decided to take control over some cables so that it could see what data is transmitted by the president palace users. Of course they want to control such set of cables, that it is impossible to download any data from the global network to the president palace without transmitting it over at least one of the cables from the set.

To put its plans into practice the company needs to buy corresponding cables from their current owners. Each cable has some cost. Since the company's main business is not spying, but providing internet connection to home users, its management wants to make the operation a good investment. So it wants to buy such a set of cables, that cables mean cost} is minimal possible.

That is, if the company buys k cables of the total cost c, it wants to minimize the value of c/k.

Input

There are several test cases in the input. The first line of each case contains n and m (2 <= n <= 100 , 1 <= m <= 400 ). Next m lines describe cables~--- each cable is described with three integer numbers: servers it connects and the cost of the cable. Cost of each cable is positive and does not exceed 107.

Any two servers are connected by at most one cable. No cable connects a server to itself. The network is guaranteed to be connected, it is possible to transmit data from any server to any other one.

There is an empty line between each cases.

Output

First output k --- the number of cables to buy. After that output the cables to buy themselves. Cables are numbered starting from one in order they are given in the input file. There should an empty line between each cases.

Example

Input Output
6 8
1 2 3
1 3 3
2 4 2
2 5 2
3 4 2
3 5 2
5 6 3
4 6 3
4
3 4 5 6
4 5
1 2 2
1 3 2
2 3 1
2 4 2
3 4 2
3
1 2 3

 题意:给出一个网络连通图n个服务器m条网线以及费用,现在需要控制某些网线,令1发出的信号无论如何都不能到达n,且保证选择的网线总费用与网线总条数的比值最小,问需要选择的网线条数,并给出它们的序号;

分析:设比值r=c/k=sigma(wi*xi)/sigma(xi),设最优值为R,即r>=R
即:sigma(wi*xi)/sigma(xi)>=R
即:sigma(wi-R)*xi>=0,所以要二分枚举R值,若wi-R的权值小于0,则一定要选择,并且选择最小的割集中的边,当存在某个R使得sigma(wi-R)*xi==0时,R就是最优解
然后从1dfs一遍,把容量不为零的边走一遍,并把所有的点标记,最后搜索一遍编号,最后的答案就是权值为负值的边和割集中的边
程序:
#include"stdio.h"
#include"string.h"
#include"math.h"
#include"iostream"
#include"queue"
#include"stack"
#include"map"
#include"string"
#define M 409
#define inf 0x3f3f3f3f
#define eps 1e-6
using namespace std;
struct node
{
int u,v,next;
double w;
}edge[M*10];
int t,head[M],work[M],a[M],b[M],c[M],dis[M],belong[M],use[M];
double min(double a,double b)
{
return a<b?a:b;
}
void init()
{
t=0;
memset(head,-1,sizeof(head));
}
void add(int u,int v,double w)
{
edge[t].u=u;
edge[t].v=v;
edge[t].w=w;
edge[t].next=head[u];
head[u]=t++;
}
int bfs(int S,int T)
{
queue<int>q;
memset(dis,-1,sizeof(dis));
dis[S]=0;
q.push(S);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=head[u];~i;i=edge[i].next)
{
int v=edge[i].v;
if(edge[i].w>eps&&dis[v]==-1)
{
dis[v]=dis[u]+1;
q.push(v);
if(v==T)
return 1;
}
}
}
return 0;
}
double dfs(int cur,double a,int T)
{
if(cur==T)return a;
for(int &i=work[cur];~i;i=edge[i].next)
{
int v=edge[i].v;
if(edge[i].w>eps&&dis[v]==dis[cur]+1)
{
double tt=dfs(v,min(a,edge[i].w),T);
if(tt)
{
edge[i].w-=tt;
edge[i^1].w+=tt;
return tt;
}
}
}
return 0;
}
double Dinic(int S,int T)
{
double ans=0;
while(bfs(S,T))
{
memcpy(work,head,sizeof(head));
while(double tt=dfs(S,inf,T))
ans+=tt;
}
return ans;
}
double fun(int n,int m,double r)
{
init();
double sum=0;
for(int i=1;i<=m;i++)
{
if(c[i]>r)
{
add(a[i],b[i],c[i]-r);
add(b[i],a[i],c[i]-r);
}
else
sum+=c[i]-r;
}
return sum+Dinic(1,n);
}
void DFS(int u)
{
use[u]=1;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].v;
if(edge[i].w>eps&&!use[v])
DFS(v);
}
}
int main()
{
int n,m,kk=0;
while(scanf("%d%d",&n,&m)!=-1)
{
double l=0,r=0,mid;
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&a[i],&b[i],&c[i]);
r+=c[i];
}
while(r-l>eps)
{
mid=(l+r)/2;
double msg=fun(n,m,mid);
if(msg>eps)
{
l=mid;
}
else
r=mid;
}
fun(n,m,mid);//重新跑一遍网络流,因为最后一次的网络流不一定是最优值mid的网络流
memset(use,0,sizeof(use));
DFS(1);
int num=0;
for(int i=1;i<=m;i++)
{
if(use[a[i]]!=use[b[i]]||c[i]<mid)
belong[num++]=i;
}
printf("%d\n",num);
printf("%d",belong[0]);
for(int i=1;i<num;i++)
printf(" %d",belong[i]);
printf("\n");
if(kk)
printf("\n");
kk++;
}
return 0;
}

  

01分数规划zoj2676(最优比例,最小割集+二分)的更多相关文章

  1. POJ 3621 Sightseeing Cows 01分数规划,最优比例环的问题

    http://www.cnblogs.com/wally/p/3228171.html 题解请戳上面 然后对于01规划的总结 1:对于一个表,求最优比例 这种就是每个点位有benefit和cost,这 ...

  2. POJ 2728 Desert King 01分数规划,最优比率生成树

    一个完全图,每两个点之间的cost是海拔差距的绝对值,长度是平面欧式距离, 让你找到一棵生成树,使得树边的的cost的和/距离的和,比例最小 然后就是最优比例生成树,也就是01规划裸题 看这一发:ht ...

  3. 【转】[Algorithm]01分数规划

    因为搜索关于CFRound277.5E题的题解时发现了这篇文章,很多地方都有值得借鉴的东西,因此转了过来 原文:http://www.cnblogs.com/perseawe/archive/2012 ...

  4. POJ 2976 Dropping tests 01分数规划 模板

    Dropping tests   Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6373   Accepted: 2198 ...

  5. 【poj 2976】Dropping tests(算法效率--01分数规划 模版题+二分){附【转】01分数规划问题}

    P.S.又是一个抽时间学了2个小时的新东西......讲解在上半部分,题解在下半部分. 先说一下转的原文:http://www.cnblogs.com/perseawe/archive/2012/05 ...

  6. POJ3757 01分数规划

    题意:      有一个任务,给你提供n太服务器,让你在这n太服务器中选出k台完成这个任务,要求是每台服务器的工作时间相同,总的花费最小. 思路:      题目中给出对于每台服务器有这个式子: To ...

  7. 【BZOJ】4753: [Jsoi2016]最佳团体 01分数规划+树上背包

    [题意]n个人,每个人有价值ai和代价bi和一个依赖对象ri<i,选择 i 时 ri 也必须选择(ri=0时不依赖),求选择k个人使得Σai/Σbi最大.n<=2500,ai,bi< ...

  8. codevs1183 泥泞的道路(01分数规划)

    1183 泥泞的道路  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond       题目描述 Description CS有n个小区,并且任意小区之间都有两 ...

  9. zoj 2676 二分+ISAP模板求实型参数的最小割(0-1分数规划问题)(可做ISAP模板)

    /* 参考博文:http://www.cnblogs.com/ylfdrib/archive/2010/09/01/1814478.html 以下题解为转载代码自己写的: zoj2676 胡伯涛论文& ...

随机推荐

  1. Kafka 0.8 配置参数解析

    http://kafka.apache.org/documentation.html#configuration   Broker Configs 4个必填参数, broker.id Each bro ...

  2. Mongo中的数据类型

    一.null null用于表示空值或者不存在的字段 {"X" : null} 二.布尔型 布尔类型有两个值true和false {"x" : true} 三.数 ...

  3. 【Android测试】【第十节】MonkeyRunner—— 录制回放

    ◆版权声明:本文出自胖喵~的博客,转载必须注明出处. 转载请注明出处:http://www.cnblogs.com/by-dream/p/4861693.html 前言 在实际项目进行过程中,频繁的需 ...

  4. php--yii2框架错误提示

    if($code!=200){ $user=new UserAuth(); $user->mobile=$register['mobile']; $user->password=md5($ ...

  5. VS2015 多项目源码共享链接

    Eclipse有这个功能,在一个项目中加入另一个项目文件夹的引用,源码包含过来,这样不必copy一份代码,只需要维护一份源代码.一直想在VS中找到这个功能,目前项目需要,终于google到了. htt ...

  6. JNI字段描述符(转)

    转载自http://fgsink.blog.163.com/blog/static/16716997020124310169911/ “([Ljava/lang/String;)V” 它是一种对函数返 ...

  7. git 初次使用

    其实知道git很久了,也一度看了不少资料来学习指令.但是一直不明白到底我该咋办,我最疑惑的地方在于,本地代码是如何存储到远程服务器上的,那些指令在什么环境下执行,其实主要是目录问题.就是我在git s ...

  8. IntelliJ IDEA gradle 创建 Java web 应用

    1.如下图,第一步很简单的,File->New->Project 2.在左边栏目找到Gradle,然后在右边勾选Java 和web 两个选项,next.如果只是Java项目就只选java就 ...

  9. 手机端input[type=date]的时候placeholder不起作用解决方案

    目前PC端对input 的date类型支持不好,我试下来的结果是只有chrome支持.firefox.IE11 都不支持.而且PC端有很多日历控件可供使用.就不去多考虑这点了. 那么在移动端的话,io ...

  10. POJ1326问题描述

    Description Mileage program of ACM (Airline of Charming Merlion) is really nice for the travelers fl ...