原题:ZOJ 3795 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3795

题目大意:给定一个有向图,要求把点分为k个集合,使得每个集合中的任意两点a, b满足a, b互相不可到达。

分析:求出强连通分量后缩点,得到有向无环图,dfs该图求出各点深度(深度加权,权值为强连通分量大小),深度最大值即答案,

因为这一条路径上任意两点都可从深度小的一点到达深度大的一点,所以任意两点必定属于不同集合,即每个点一个集合;求的最大深度集合后,又可以把其它路径(长度为len)上的各点依次归到集合1..len。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#define Mod 1000000009
using namespace std;
#define N 100007 vector<int> G[N],G2[N];
stack<int> stk;
int instk[N],cnt,Time,n,m,dep[N];
int low[N],dfn[N],bel[N],num[N]; void tarjan(int u)
{
low[u] = dfn[u] = ++Time;
stk.push(u);
instk[u] = ;
for(int i=;i<G[u].size();i++)
{
int v = G[u][i];
if(!dfn[v])
{
tarjan(v);
low[u] = min(low[u],low[v]);
}
else if(instk[v])
low[u] = min(low[u],dfn[v]);
}
if(low[u] == dfn[u])
{
cnt++;
int v;
do
{
v = stk.top();
stk.pop();
instk[v] = ;
bel[v] = cnt;
num[cnt]++;
}while(u != v);
}
} void Tarjan()
{
memset(bel,,sizeof(bel));
memset(instk,,sizeof(instk));
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
memset(num,,sizeof(num));
Time = cnt = ;
while(!stk.empty())
stk.pop();
for(int i=;i<=n;i++)
if(!dfn[i])
tarjan(i);
} void Build()
{
int i,j;
for(i=;i<=cnt;i++)
G2[i].clear();
for(i=;i<=n;i++)
{
for(j=;j<G[i].size();j++)
{
int v = G[i][j];
if(bel[i] != bel[v])
G2[bel[i]].push_back(bel[v]);
}
}
} int dfs(int u)
{
if(dep[u])
return dep[u];
for(int i=;i<G2[u].size();i++)
{
int v = G2[u][i];
dep[u] = max(dep[u],dfs(v));
}
dep[u] += num[u];
return dep[u];
} int main()
{
int i,j,u,v;
while(scanf("%d%d",&n,&m)!=EOF)
{
for(i=;i<=n;i++)
G[i].clear();
for(i=;i<m;i++)
{
scanf("%d%d",&u,&v);
G[u].push_back(v);
}
Tarjan();
Build();
memset(dep,,sizeof(dep));
int res = ;
for(i=;i<=n;i++)
res = max(res,dfs(i));
printf("%d\n",res);
}
return ;
}

2014 Super Training #8 G Grouping --Tarjan求强连通分量的更多相关文章

  1. UESTC 901 方老师抢银行 --Tarjan求强连通分量

    思路:如果出现了一个强连通分量,那么走到这个点时一定会在强连通分量里的点全部走一遍,这样才能更大.所以我们首先用Tarjan跑一遍求出所有强连通分量,然后将强连通分量缩成点(用到栈)然后就变成了一个D ...

  2. tarjan求强连通分量+缩点+割点以及一些证明

    “tarjan陪伴强联通分量 生成树完成后思路才闪光 欧拉跑过的七桥古塘 让你 心驰神往”----<膜你抄>   自从听完这首歌,我就对tarjan开始心驰神往了,不过由于之前水平不足,一 ...

  3. tarjan求强连通分量+缩点+割点/割桥(点双/边双)以及一些证明

    “tarjan陪伴强联通分量 生成树完成后思路才闪光 欧拉跑过的七桥古塘 让你 心驰神往”----<膜你抄>   自从听完这首歌,我就对tarjan开始心驰神往了,不过由于之前水平不足,一 ...

  4. HDU 1827 Summer Holiday(tarjan求强连通分量+缩点构成新图+统计入度+一点贪心思)经典缩点入门题

    Summer Holiday Time Limit: 10000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  5. UVALive 4262——Trip Planning——————【Tarjan 求强连通分量个数】

    Road Networks Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit Stat ...

  6. Tarjan求强连通分量,缩点,割点

    Tarjan算法是由美国著名计算机专家发明的,其主要特点就是可以求强连通分量和缩点·割点. 而强联通分量便是在一个图中如果有一个子图,且这个子图中所有的点都可以相互到达,这个子图便是一个强连通分量,并 ...

  7. CCF 高速公路 tarjan求强连通分量

    问题描述 某国有n个城市,为了使得城市间的交通更便利,该国国王打算在城市之间修一些高速公路,由于经费限制,国王打算第一阶段先在部分城市之间修一些单向的高速公路. 现在,大臣们帮国王拟了一个修高速公路的 ...

  8. tarjan求强连通分量(模板)

    https://www.luogu.org/problem/P2341 #include<cstdio> #include<cstring> #include<algor ...

  9. Tarjan求强连通分量、求桥和割点模板

    Tarjan 求强连通分量模板.参考博客 #include<stdio.h> #include<stack> #include<algorithm> using n ...

随机推荐

  1. 再说Play!framework http://hsfgo.iteye.com/blog/806974

    这篇帖子的内容我本来想发到 http://www.iteye.com/topic/806660这里的主贴里去的,想挽回被隐藏的命运,但我写完本贴的内容,却发现为时已晚.好吧,我承认,上一个贴的标题容易 ...

  2. ASP.Net页面刷新后自动滚动到原来位置

    在网上搜索之后总结了三种方式: 1.设置Page中的MaintainScrollPositionOnPostback属性为true A>.页面里有MaintainScrollPositionOn ...

  3. JAVA基础学习day18--常用工具类

    一.System 1.1.概述 System 类包含一些有用的类字段和方法.它不能被实例化. 在 System 类提供的设施中,有标准输入.标准输出和错误输出流:对外部定义的属性和环境变量的访问:加载 ...

  4. 【转】IOS开发资源汇总

    转自:http://blog.csdn.net/favormm/article/details/6664970 如何用Facebook graphic api上传视频: http://develope ...

  5. 全球最低功耗蓝牙单芯片DA14580的软件体系 -层次架构和BLE消息事件处理过程

    在作者之前发表的<全球最低功耗蓝牙单芯片DA14580的系统架构和应用开发框架分析>.<全球最低功耗蓝牙单芯片DA14580的硬件架构和低功耗>.<全球最低功耗蓝牙单芯片 ...

  6. unity下载文件二(http同步下载)

    说到下载,其实C#里的网络模块,真的是被各种封装,最终就看你对这个语言中库的熟悉程度了. 抛开C#中IO效率的弊病不说,真的很容易,记住,太过于注重效率或者追求极致,你将会死的很惨,有时候折中才是最好 ...

  7. 再也不用管UIImagePicker的代理了

    EasyImagePicker 闲暇之余对UIImagePicker做了封装,将代理调用的方式封装成block回调的方式,这样一行代码就能够搞定UIImagePicker的使用,包括选择图片,取消选择 ...

  8. OC语言-01-面向过程与面向对象思想

    一.面向过程 1> 思想 面向过程是一种以过程为中心的最基础编程思想,不支持面向对象的特性. 面向过程是一种模块化程序设计方法 2> 开发方法 面向过程的开发方法是以过程(也可以说是模块) ...

  9. java网络---查找Internet

    连接到Internet的设备称为节点,计算机节点称为host. 为了区别每一台连接互联网的计算机,就有了Internet Protocol地址的概念. IPV4 & IPV6 我们以前默认的是 ...

  10. ruby 删除文件

    f = "app/assets/#{vm.uuid}.rrd" if FileTest::exist?(f) File.delete(f) end