k-means 算法介绍
概述
聚类属于机器学习的无监督学习,在数据中发现数据对象之间的关系,将数据进行分组,组内的相似性越大,组间的差别越大,则聚类效果越好。它跟分类的最主要区别就在于有没有“标签”。比如说我们有一组数据,数据对应着每个“标签”,我们通过这些数据与标签之间的相关性,预测出某些数据属于哪些“标签”,这属于分类;而聚类是没有“标签”的,因此说它属于无监督学习,分类则属于监督学习。
k-means(k-均值)属于聚类算法之一,笼统点说,它的过程是这样的,先设置参数k,通过欧式距离进行计算,从而将数据集分成k个簇。为了更好地理解这个算法,下面更加详细的介绍这个算法的思想。
算法思想
我们先过一下几个基本概念:
(1) K值:即要将数据分为几个簇;
(2) 质心:可理解为均值,即向量各个维度取平均值,这个是我们聚类算法一个重要的指标;
(3) 欧式距离:
上面的这3条基本概念你大可不必太纠结,因为这是为了让你看下面的内容时,能够更好理解。假如说,我们现在有一堆数据集,在图像上的分布是这样的:

从图像上看,貌似可以直接把他分为3个簇,因此,我们设置 k=3,然后我们随机生成3个点,再通过欧式距离公式,计算每个点到这三个点之间的距离,距离哪个点最近的,就归类,于是它就变成了这样:

当然,这样还不够,毕竟这三个点只是随机生成的,而且我们还需要不断调整以达到更好的聚类效果;因此我们计算初次分好的簇的均值,即上面提到的质心,让这三个质心替代掉随机点,然后迭代重复上面的过程,以达到最优。


......(重复迭代n次)......
最后,才生成最优解,如图:

上面的图是在这个网站通过演示得到的,可以上这个网址实际操作一波,加深理解。
缺点
几乎每个算法都有其缺点,这个算法也不例外,优点是原理简单,实现容易,缺点如下:
(1)不规则点的聚类结果会有所偏差,如下图,比如我们想分成4个簇,俩眼睛一嘴巴以及外轮廓,但效果总是难以达到。

(2)k值难以确定。比如下面这样的图,应该把它从中间分割得到两块呢还是分成左中右三块呢,难以确定。

想要第一时间获取更多有意思的推文,可关注公众号: Max的日常操作

k-means 算法介绍的更多相关文章
- KNN 与 K - Means 算法比较
KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过 ...
- K-means算法
K-means算法很简单,它属于无监督学习算法中的聚类算法中的一种方法吧,利用欧式距离进行聚合啦. 解决的问题如图所示哈:有一堆没有标签的训练样本,并且它们可以潜在地分为K类,我们怎么把它们划分呢? ...
- FCM聚类算法介绍
FCM算法是一种基于划分的聚类算法,它的思想就是使得被划分到同一簇的对象之间相似度最大,而不同簇之间的相似度最小.模糊C均值算法是普通C均值算法的改进,普通C均值算法对于数据的划分是硬性的,而FCM则 ...
- 从K近邻算法谈到KD树、SIFT+BBF算法
转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章 ...
- KNN算法介绍
KNN算法全名为k-Nearest Neighbor,就是K最近邻的意思. 算法描述 KNN是一种分类算法,其基本思想是采用测量不同特征值之间的距离方法进行分类. 算法过程如下: 1.准备样本数据集( ...
- 机器学习03:K近邻算法
本文来自同步博客. P.S. 不知道怎么显示数学公式以及排版文章.所以如果觉得文章下面格式乱的话请自行跳转到上述链接.后续我将不再对数学公式进行截图,毕竟行内公式截图的话排版会很乱.看原博客地址会有更 ...
- Python之常见算法介绍
一.算法介绍 1. 算法是什么 算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制.也就是说,能够对一定规范的输入,在有限时间内获得所要求的输 ...
- 机器学习(Machine Learning)算法总结-K临近算法
一.算法详解 1.什么是K临近算法 Cover 和 Hart在1968年提出了最初的临近算法 属于分类(classification)算法 邻近算法,或者说K最近邻(kNN,k-NearestNeig ...
- <转>从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
转自 http://blog.csdn.net/likika2012/article/details/39619687 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经 ...
- K中心点算法之PAM
一.PAM聚类算法: 选用簇中位置最中心的对象,试图对n个对象给出k个划分:代表对象也被称为是中心点,其他对象则被称为非代表对象:最初随机选择k个对象作为中心点,该算法反复地用非代表对 ...
随机推荐
- sql server 关于表中只增标识问题 C# 实现自动化打开和关闭可执行文件(或 关闭停止与系统交互的可执行文件) ajaxfileupload插件上传图片功能,用MVC和aspx做后台各写了一个案例 将小写阿拉伯数字转换成大写的汉字, C# WinForm 中英文实现, 国际化实现的简单方法 ASP.NET Core 2 学习笔记(六)ASP.NET Core 2 学习笔记(三)
sql server 关于表中只增标识问题 由于我们系统时间用的过长,数据量大,设计是采用自增ID 我们插入数据的时候把ID也写进去,我们可以采用 关闭和开启自增标识 没有关闭的时候 ,提示一下错 ...
- 浅谈xss原理
近日,论坛上面XSS满天飞,各处都能够见到XSS的痕迹,前段时间论坛上面也出现了XSS的迹象.然后我等小菜不是太懂啊,怎么办?没办法仅仅有求助度娘跟谷歌这对情侣了. 能够说小菜也算懂了一些.不敢藏私, ...
- 写2个线程,其中一个线程打印1~52,另一个线程打印A~z,打印顺序应该是12A34B45C……5152Z
我写的 class LN { private int flag = 0; public static char ch = 'A'; public static int n = 1; public sy ...
- 使用MegaCli查看raid信息
LSI SAS based MegaRAID driver http://www.lsi.com/downloads/Public/Nytro/downloads/Nytro%20XD/MegaCli ...
- Tomcat 80端口 配置及域名访问步骤
一.修改端口tomcat默认监听端口是8080,我们如果想不带端口的直接访问项目,就必须监听80 端口: service.xml 以下代码段 <Connector port="8080 ...
- Java堆内存与栈内存对比
在数据结构中,堆和栈可以说是两种最基础的数据结构,而Java中的栈内存空间和堆内存空间有什么异同,以及和数据结构中的堆栈有何关系? 一.Java 堆存储空间 堆内存(堆存储空间)会在Java运行时分配 ...
- Guava Cache在实际项目中的应用
对于Guava Cache本身就不多做介绍了,一个非常好用的本地cache lib,可以完全取代自己手动维护ConcurrentHashMap. 背景 目前需要开发一个接口I,对性能要求有非常高的要求 ...
- Spring Boot 整合 Listener
两种方法: 方法一: 使用注解 编写Listener,并使用@WebListener注解标记,在启动类使用注解:@ServletComponentScan package clc.user.liste ...
- spring的依赖注入(DI)、控制反转(IOC)和面向切面(AOP)
在spring的配置文件增加 <context:component-scan base-package="com.jmu.ccjoin.service"/> <c ...
- URAL1519 Formula 1 —— 插头DP
题目链接:https://vjudge.net/problem/URAL-1519 1519. Formula 1 Time limit: 1.0 secondMemory limit: 64 MB ...