LN : leetcode 730 Count Different Palindromic Subsequences
lc 730 Count Different Palindromic Subsequences
730 Count Different Palindromic Subsequences
Given a string S, find the number of different non-empty palindromic subsequences in S, and return that number modulo 10^9 + 7.
A subsequence of a string S is obtained by deleting 0 or more characters from S.
A sequence is palindromic if it is equal to the sequence reversed.
Two sequences A_1, A_2, ... and B_1, B_2, ... are different if there is some i for which A_i != B_i.
Example 1:
Input:
S = 'bccb'
Output: 6
Explanation:
The 6 different non-empty palindromic subsequences are 'b', 'c', 'bb', 'cc', 'bcb', 'bccb'.
Note that 'bcb' is counted only once, even though it occurs twice.
Example 2:
Input:
S = 'abcdabcdabcdabcdabcdabcdabcdabcddcbadcbadcbadcbadcbadcbadcbadcba'
Output: 104860361
Explanation:
There are 3104860382 different non-empty palindromic subsequences, which is 104860361 modulo 10^9 + 7.
Note:
The length of S will be in the range [1, 1000].
Each character S[i] will be in the set {'a', 'b', 'c', 'd'}.
带记忆数组 Accepted
虽然题目只要求四个字母,但我们扩展普遍性,这里就做二十六个字母的。带记忆数组和动态规划的本质是差不多的。带记忆数组memo的递归解法,这种解法的思路是一层一层剥洋葱,比如"bccb",按照字母来剥,先剥字母b,确定最外层"b _ _ b",这会产生两个回文子序列"b"和"bb",然后递归进中间的部分,把中间的回文子序列个数算出来加到结果res中,然后开始剥字母c,找到最外层"cc",此时会产生两个回文子序列"c"和"cc",然后由于中间没有字符串了,所以递归返回0,按照这种方法就可以算出所有的回文子序列了。
class Solution {
public:
int countPalindromicSubsequences(string S) {
int len = S.size();
vector<vector<int>> dp(len+1, vector<int>(len+1, 0));
vector<vector<int>> ch(26, vector<int>());
for (int i = 0; i < len; i++) {
ch[S[i]-'a'].push_back(i);
}
return calc(S, ch, dp, 0, len);
}
int calc(string S, vector<vector<int>>& ch, vector<vector<int>>& dp, int start, int end) {
if (start >= end) return 0;
if (dp[start][end] > 0) return dp[start][end];
long ans = 0;
for (int i = 0; i < 26; i++) {
if (ch[i].empty()) continue;
auto new_start = lower_bound(ch[i].begin(), ch[i].end(), start);
auto new_end = lower_bound(ch[i].begin(), ch[i].end(), end) - 1;
if (new_start == ch[i].end() || *new_start >= end) continue;
ans++;
if (new_start != new_end) ans++;
ans += calc(S, ch, dp, *new_start+1, *new_end);
}
dp[start][end] = ans % int(1e9+7);
return dp[start][end];
}
};
LN : leetcode 730 Count Different Palindromic Subsequences的更多相关文章
- leetcode 730 Count Different Palindromic Subsequences
题目链接: https://leetcode.com/problems/count-different-palindromic-subsequences/description/ 730.Count ...
- [LeetCode] 730. Count Different Palindromic Subsequences 计数不同的回文子序列的个数
Given a string S, find the number of different non-empty palindromic subsequences in S, and return t ...
- 【LeetCode】730. Count Different Palindromic Subsequences 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 记忆化搜索 动态规划 日期 题目地址:https:/ ...
- 730. Count Different Palindromic Subsequences
Given a string S, find the number of different non-empty palindromic subsequences in S, and return t ...
- [LeetCode] Count Different Palindromic Subsequences 计数不同的回文子序列的个数
Given a string S, find the number of different non-empty palindromic subsequences in S, and return t ...
- [Swift]LeetCode730. 统计不同回文子字符串 | Count Different Palindromic Subsequences
Given a string S, find the number of different non-empty palindromic subsequences in S, and return t ...
- Count Different Palindromic Subsequences
Given a string S, find the number of different non-empty palindromic subsequences in S, and return t ...
- 乘风破浪:LeetCode真题_005_Longest Palindromic Substring
乘风破浪:LeetCode真题_005_Longest Palindromic Substring 一.前言 前面我们已经提到过了一些解题方法,比如递推,逻辑推理,递归等等,其实这些都可以用到动态规划 ...
- [LeetCode] 038. Count and Say (Easy) (C++/Python)
索引:[LeetCode] Leetcode 题解索引 (C++/Java/Python/Sql) Github: https://github.com/illuz/leetcode 038. Cou ...
随机推荐
- [原创]java调用PageOffice生成word
一.在开发OA办公或与文档相关的Web系统中,难免会遇到动态生成word文档的需求,为了解决工作中遇到导出word文档的需求,前一段时间上网找了一些资料,在word导出这方面有很多工具可以使用,jac ...
- [Java] 继承,隐藏,覆盖,重载,多态,抽象类,接口
1.子类 class SonClass extends ABC{...} 在子类定义后,子类中就可以直接隐式包含父类的成员变量和方法,而不用再写,这就是使用继承的优点. 子类包含父类的成员,不是子类和 ...
- [Selenium] 操作页面元素等待时间
WebDriver 在操作页面元素等待时间时,提供2种等待方式:一个为显式等待,一个为隐式等待,其区别在于: 1)显式等待:明确地告诉 WebDriver 按照特定的条件进行等待,条件未达到就一直等待 ...
- TypeError: can't convert CUDA tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.
报错原因:numpy不能读取CUDA tensor 需要将它转化为 CPU tensor. 所以如果想把CUDA tensor格式的数据改成numpy时,需要先将其转换成cpu float-tenso ...
- 使用strtok_s函数从一个字符串中分离出单词
下面的代码从含有多个结束符的字符串中分离出单词来,需要对strtok_s有清楚的认识.这段代码是我在写一个处理文件中单词个数时用来分离读取到的字符串中的单词时写的,亲测可用~ 1 2 3 4 5 6 ...
- Task用法
转: https://www.cnblogs.com/wyy1234/p/9172467.html
- Java泛型简明教程
泛型是Java SE 5.0中引入的一项特征,自从这项语言特征出现多年来,我相信,几乎所有的Java程序员不仅听说过,而且使用过它.关于Java泛型的教程,免费的,不免费的,有很多.我遇到的最好的教材 ...
- 1004 n^n的末位数字
题目来源: Author Ignatius.L (Hdu 1061) 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 给出一个整数N,输出N^N(N的N次方)的十 ...
- vmware实现与windows下的共享文件
1 首先你得先设置一下windows下得共享 比如是准备共享D盘 那么右击 ----->属性------->高级共享勾上就OK勒 2那么vmware怎么设置呢? 打开vmware-> ...
- https://www.luogu.org/blog/An-Amazing-Blog/mu-bi-wu-si-fan-yan-ji-ge-ji-miao-di-dong-xi
https://www.luogu.org/blog/An-Amazing-Blog/mu-bi-wu-si-fan-yan-ji-ge-ji-miao-di-dong-xi