第十一章 中级绘图

本节用到的函数有:

plot

legend

corrgram

mosaic

11.2折线图

如果将散点图上的点从左往右连接起来,那么就会得到一个折线图。

创建散点图和折线图:

> opar<-par(no.readonly=TRUE)
> par(mfrow=c(1,2))
> t1<-subset(Orange,Tree==1)
> plot(t1$age,t1$circumference,xlab="Age(days)",ylab="circumference (mm)",main="orange tree 1growth")
> plot(t1$age,t1$circumference,xlab="Age(days)",ylab="circumference (mm)",main="orange tree 1growth",type="b")
> par(opar)

参数type =的可选值

p

只有点

l

只有线

o

实心点和线(即线覆盖在点上)

b、c

线连接点(c时不绘制点)

s、S

阶梯线

h

直方图式的垂直线

n

不生成任何点和线(通常用来为后面的命令创建坐标轴)

注意,plot()和lines()函数工作原理并不相同。plot()函数是被调用时即创建一幅新图,

而lines()函数则是在已存在的图形上添加信息,并不能自己生成图形。因此,lines()函数通常是在plot()函数生成一幅图形后再被调用。如果对图形有要求,可以先通过plot()函数中的type = n来创建坐标轴、标题和其他图形特征,然后再使用lines()函数添加各种需要绘制的曲线。

展示五种橘树随时间推移的生长状况的折线图:

> opar<-par(no.readonly=TRUE)
> par(mfrow=c(2,4))
> t1<-subset(Orange,Tree==1)
> plot(t1$age,t1$circumference,xlab="Age(days)",ylab="circumference(mm)",main="type=p",type="p")
> plot(t1$age,t1$circumference,xlab="Age(days)",ylab="circumference(mm)",main="type=l",type="l")
> plot(t1$age,t1$circumference,xlab="Age(days)",ylab="circumference(mm)",main="type=o",type="o")
> plot(t1$age,t1$circumference,xlab="Age(days)",ylab="circumference(mm)",main="type=b",type="b")
> plot(t1$age,t1$circumference,xlab="Age(days)",ylab="circumference(mm)",main="type=c",type="c")
> plot(t1$age,t1$circumference,xlab="Age(days)",ylab="circumference(mm)",main="type=s",type="s")
> plot(t1$age,t1$circumference,xlab="Age(days)",ylab="circumference(mm)",main="type=S",type="S")
> plot(t1$age,t1$circumference,xlab="Age(days)",ylab="circumference(mm)",main="type=h",type="h")

  

展示五种橘树随时间推移的生长状况的折线图

> Orange$Tree<-as.numeric(Orange$Tree)
> ntrees<-max(Orange$Tree)
> xrange<-range(Orange$age)
> yrange<-range(Orange$circumference)
> plot(xrange,yrange,type="n",xlab="age(days)",ylab="circumference(mm)" )
> colors<-rainbow(ntrees)
> linetype<-c(1:ntrees)
> plotchar<-seq(18,18+ntrees,1)
> for(i in 1:ntrees){tree<-subset(Orange,Tree==i), lines(tree$age,tree$circumference, type="b", lwd=2, lty=linetype[i],col=colors[i], pch=plotchar[i] ) }
> title("tree growth","example of lineplot")
> legend(xrange[1],yrange[2], 1:ntrees, cex=.8, pch=plotchar, lty=linetype, title="tree")

  

11.3 相关图

利用corrgram包中的corrgram()函数,可以以图形方式展示该相关系数矩阵

> library(corrgram)
> corrgram(mtcars,order=TRUE,lower.panel=panel.shade,upper.panel=panel.pie,text.panel=panel.txt, main="correlogram of mtcarsintercorrelations")

默认地,蓝色和从左下指向右上的斜杠表示单元格中的两个变量呈正相关。反过来,红色和从左上指向右下的斜杠表示变量呈负相关。色彩越深,饱和度越高,说明变量相关性越大。相关性接近于0的单元格基本无色。本图为了将有相似相关模式的变量聚集在一起,对矩阵的行和列都重新进行了排序(使用主成分法)。从图中含阴影的单元格中可以看到,gear、am、drat和mpg相互间呈正相关,wt、disp、hp和carb相互间也呈正相关。但第一组变量与第二组变量呈负相关。还可以看到carb和am、vs和gear、vs和am以及drat和qsec四组变量间的相关性很弱。上三角单元格用饼图展示了相同的信息。颜色的功能同上,但相关性大小由被填充的饼图块的大小来展示。正相关性将从12点钟处开始顺时针填充饼图,而负相关性则逆时针方向填充饼图。

corrgram()函数的格式如下:

corrgram(x, type=NULL, order = FALSE, labels,panel=panel.shade,
lower.panel=panel,upper.panel=panel,diag.panel=NULL,text.panel=textPanel,label.pos=c(0.5, 0.5), label.srt=0, cex.labels=NULL,font.labels=1,row1attop=TRUE, dir="",gap=0,abs=FALSE,col.regions=colorRampPalette(c("red","salmon","white","royalblue","navy")),cor.method="pearson", ...)

可以通过选项lower.panel 和upper.panel来分别设置主对角线下方和上方的元素类型。而text.panel和diag.panel选项控制着主对角线元素类型。

在下三角区域使用平滑拟合曲线和置信椭圆,上三角区域使用散点图:

> library(corrgram)
> corrgram(mtcars,order=TRUE,lower.panel=panel.ellipse,upper.panel=panelNaNs,text.panel=panel.txt,lwd=1.5,diag.panel=panel.minmax,main="correlogram of mtcars using\nscatter plots and ellipse")

mtcars数据框中变量的相关系数图。下三角区域包含平滑拟合曲线和置信椭圆,上三角区域包含散点图。主对角面板包含变量最小和最大值。矩阵的行和列利用主成分分析法进行了重排序

> library(corrgram)
> corrgram(mtcars,lower.panel=panel.shade,upper.panel=NULL,text.panel=panel.txt, lwd=1.5, main="Car mileage data(unsorted)")

下三角区域使用了阴影,并保持原变量顺序不变,上三角区域留白。下三角区域的阴影代表相关系数的大小和正负。变量按初始顺序排列.

11.4 马赛克图

若只观察单个类别型变量,可以使用柱状图或者饼图;若存在两个类别型变量,可以使用三维柱状图;若有两个以上的类别型变量,一种办法是绘制马赛克图(mosaic plot)。在马赛克图中,嵌套矩形面积正比于单元格频率,其中该频率即多维列联表中的频率。颜色和/或阴影可表示拟合模型的残差值。vcd包中的mosaic()函数可以绘制马赛克图

> ftable(Titanic)
Survived No Yes
Class Sex Age
1st Male Child 0 5
Adult 118 57
FemaleChild 0 1
Adult 4 140
2nd Male Child 0 11
Adult 154 14
FemaleChild 0 13
Adult 13 80
3rd Male Child 35 13
Adult 387 75
FemaleChild 17 14
Adult 89 76
Crew Male Child 0 0
Adult 670 192
FemaleChild 0 0
Adult 3 20

mosaic()函数可按如下方式调用

mosaic(table)

其中table是数组形式的列联表。另外,也可用:

> library(vcd)
> mosaic(Titanic,shade=TRUE,legend=TRUE)

> library(vcd)
> mosaic(~Class+Sex+Age+Survived,data=Titanic,shade=TRUE,legend=TRUE)

按船舱等级、乘客性别和年龄层绘制的泰坦尼克号幸存者的马赛克图

R in action读书笔记(15)第十一章 中级绘图 之二 折线图 相关图 马赛克图的更多相关文章

  1. R in action读书笔记(14)第十一章 中级绘图 之一:散点图(高能预警)

    第十一章中级绘图 本章内容: 二元变量和多元变量关系的可视化 绘制散点图和折线图 理解相关图 学习马赛克图和关联图 本章用到的函数有: plot hexbin ablines iplot scatte ...

  2. R in action读书笔记(22)第十六章 高级图形进阶(下)

    16.2.4 图形参数 在lattice图形中,lattice函数默认的图形参数包含在一个很大的列表对象中,你可通过trellis.par.get()函数来获取,并用trellis.par.set() ...

  3. 《Android群英传》读书笔记 (5) 第十一章 搭建云端服务器 + 第十二章 Android 5.X新特性详解 + 第十三章 Android实例提高

    第十一章 搭建云端服务器 该章主要介绍了移动后端服务的概念以及Bmob的使用,比较简单,所以略过不总结. 第十三章 Android实例提高 该章主要介绍了拼图游戏和2048的小项目实例,主要是代码,所 ...

  4. 《深入理解java虚拟机》读书笔记十——第十一章

    第十一章  晚期(运行期)优化 1.HotSpot虚拟机内的即时编译 解释器与编译器: 许多Java虚拟机的执行引擎在执行Java代码的时候都有解释执行(通过解释器执行)和编译执行(通过即时编译器产生 ...

  5. Android群英传》读书笔记 (3) 第六章 Android绘图机制与处理技巧 + 第七章 Android动画机制与使用技巧

    第六章 Android绘图机制与处理技巧 1.屏幕尺寸信息屏幕大小:屏幕对角线长度,单位“寸”:分辨率:手机屏幕像素点个数,例如720x1280分辨率:PPI(Pixels Per Inch):即DP ...

  6. R in action读书笔记(20)第十五章 处理缺失数据的高级方法

    处理缺失数据的高级方法 15.1 处理缺失值的步骤 一个完整的处理方法通常包含以下几个步骤: (1) 识别缺失数据: (2) 检查导致数据缺失的原因: (3) 删除包含缺失值的实例或用合理的数值代替( ...

  7. R in action读书笔记(12)第九章 方差分析

    第九章方差分析 9.2 ANOVA 模型拟合 9.2.1 aov()函数 aov(formula, data = NULL, projections =FALSE, qr = TRUE, contra ...

  8. R in action读书笔记(5)-第七章:基本统计分析

    7.1描述性统计分析 > vars<-c("mpg","hp","wt") > head(mtcars[vars])    ...

  9. R in action读书笔记(21)第十六章 高级图形进阶(上)

    16.1 R 中的四种图形系统 基础图形函数可自动调用,而grid和lattice函数的调用必须要加载相应的包(如library(lattice)).要调用ggplot2函数需下载并安装该包(inst ...

随机推荐

  1. 【视频】零基础学Android开发:蓝牙聊天室APP(三)

    零基础学Android开发:蓝牙聊天室APP第三讲 3.1 ImageView.ImageButton控件具体解释 3.2 GridView控件具体解释 3.3 SimpleAdapter适配器具体解 ...

  2. 百度面试经历_web前端开发

    百度面试经历_web前端开发 --2016年09月24日校招杭州站 刚面试完,担心过去就忘记掉,故回来时在地铁上用手机码下面试题目,供参考,也留作自己以后的面试参考依据.

  3. go---weichart个人对Golang中并发理解

    个人觉得goroutine是Go并行设计的核心,goroutine是协程,但比线程占用更少.golang对并发的处理采用了协程的技术.golang的goroutine就是协程的实现. 十几个gorou ...

  4. POJ2594 Treasure Exploratio —— 最小路径覆盖 + 传递闭包

    题目链接:https://vjudge.net/problem/POJ-2594 Treasure Exploration Time Limit: 6000MS   Memory Limit: 655 ...

  5. HDU1176 免费馅饼 —— DP

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1176 免费馅饼 Time Limit: 2000/1000 MS (Java/Others ...

  6. python dig 模拟—— DGA域名判定用

    #!/usr/bin/env python import dns.resolver, sys def get_domain_ip(domain): """Get the ...

  7. BZOJ_5369_[Pkusc2018]最大前缀和_状压DP

    BZOJ_5369_[Pkusc2018]最大前缀和_状压DP Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于 ...

  8. cardboard sdk for unity 下载地址

    https://github.com/googlesamples/cardboard-unity

  9. hdu4604 Deque(最长上升子序列变形)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4604 题意:一个含有n个数栈,每次取出一个数,可以把这个数放在deque(双向队列)首部,放在尾部,或 ...

  10. Luogu P2158 [SDOI2008]仪仗队【数学/欧拉函数】by cellur925

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...