Python之机器学习-波斯顿房价预测
波士顿房价预测
导入模块
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib.font_manager import FontProperties
from sklearn.linear_model import LinearRegression
%matplotlib inline
font = FontProperties(fname='/Library/Fonts/Heiti.ttc')
获取数据
housing-data.txt文件可以加我微信获取:a1171958281
打印数据
df = pd.read_csv('housing-data.txt', sep='\s+', header=0)
df.head()
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| CRIM | ZN | INDUS | CHAS | NOX | RM | AGE | DIS | RAD | TAX | PTRATIO | B | LSTAT | MEDV | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0.00632 | 18.0 | 2.31 | 0 | 0.538 | 6.575 | 65.2 | 4.0900 | 1 | 296.0 | 15.3 | 396.90 | 4.98 | 24.0 |
| 1 | 0.02731 | 0.0 | 7.07 | 0 | 0.469 | 6.421 | 78.9 | 4.9671 | 2 | 242.0 | 17.8 | 396.90 | 9.14 | 21.6 |
| 2 | 0.02729 | 0.0 | 7.07 | 0 | 0.469 | 7.185 | 61.1 | 4.9671 | 2 | 242.0 | 17.8 | 392.83 | 4.03 | 34.7 |
| 3 | 0.03237 | 0.0 | 2.18 | 0 | 0.458 | 6.998 | 45.8 | 6.0622 | 3 | 222.0 | 18.7 | 394.63 | 2.94 | 33.4 |
| 4 | 0.06905 | 0.0 | 2.18 | 0 | 0.458 | 7.147 | 54.2 | 6.0622 | 3 | 222.0 | 18.7 | 396.90 | 5.33 | 36.2 |
特征选择
散点图矩阵
使用sns库的pairplot()方法绘制的散点图矩阵可以查看数据集内部特征之间的关系,例如可以观察到特征间分布关系以及离群样本。
本文只绘制了三列(RM、MEDV(标记)、LSTAT)特征和标记之间的联系,有兴趣的可以调用该方法查看其它特征之间的关系。
# 选择三列特征
cols = ['RM', 'MEDV', 'LSTAT']
# 构造三列特征之间的联系即构造散点图矩阵
sns.pairplot(df[cols], height=3)
plt.tight_layout()
plt.show()

上图可以看出第一行(RM)第二列(MEDV)的特征与标记存在线性关系;第二行(MEDV)第二列(MEDV)即MEDV值可能呈正态分布。
关联矩阵
使用sns.heatmap()方法绘制的关联矩阵可以看出特征之间的相关性大小,关联矩阵是包含皮尔森积矩相关系数的正方形矩阵,用来度量特征对之间的线性依赖关系。
# 求解上述三列特征的相关系数
'''
对于一般的矩阵X,执行A=corrcoef(X)后,A中每个值的所在行a和列b,反应的是原矩阵X中相应的第a个列向量和第b个列向量的
相似程度(即相关系数)
'''
cm = np.corrcoef(df[cols].values.T)
# 控制颜色刻度即颜色深浅
sns.set(font_scale=2)
# 构造关联矩阵
hm = sns.heatmap(cm, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={
'size': 20}, yticklabels=cols, xticklabels=cols)
plt.show()

上图可以看出特征LSTAT和标记MEDV的具有最高的相关性-0.74,但是在散点图矩阵中会发现LSTAT和MEDV之间存在着明显的非线性关系;而特征RM和标记MEDV也具有较高的相关性0.70,并且从散点矩阵中会发现特征RM和标记MEDV之间存在着线性关系。因此接下来将使用RM作为线性回归模型的特征。
训练模型
X = df[['RM']].values
y = df['MEDV'].values
lr = LinearRegression()
lr.fit(X, y)
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,
normalize=False)
可视化
plt.scatter(X, y, c='r', s=30, edgecolor='white',label='训练数据')
plt.plot(X, lr.predict(X), c='g')
plt.xlabel('平均房间数目[MEDV]', fontproperties=font)
plt.ylabel('以1000美元为计价单位的房价[RM]', fontproperties=font)
plt.title('波士顿房价预测', fontproperties=font, fontsize=20)
plt.legend(prop=font)
plt.show()
print('普通线性回归斜率:{}'.format(lr.coef_[0]))

普通线性回归斜率:9.10210898118031
使用RANSAC算法之后可以发现线性回归拟合的线与未用RANSAC算法拟合出来的线的斜率不同,可以说RANSAC算法降低了离群值潜在的影响,但是这并不能说明这种方法对未来新数据的预测性能是否有良性影响。
Python之机器学习-波斯顿房价预测的更多相关文章
- 02-11 RANSAC算法线性回归(波斯顿房价预测)
目录 RANSAC算法线性回归(波斯顿房价预测) 一.RANSAC算法流程 二.导入模块 三.获取数据 四.训练模型 五.可视化 更新.更全的<机器学习>的更新网站,更有python.go ...
- 【udacity】机器学习-波士顿房价预测小结
Evernote Export 机器学习的运行步骤 1.导入数据 没什么注意的,成功导入数据集就可以了,打印看下数据的标准格式就行 用个info和describe 2.分析数据 这里要详细分析数据的内 ...
- 【udacity】机器学习-波士顿房价预测
import numpy as np import pandas as pd from Udacity.model_check.boston_house_price import visuals as ...
- 波士顿房价预测 - 最简单入门机器学习 - Jupyter
机器学习入门项目分享 - 波士顿房价预测 该分享源于Udacity机器学习进阶中的一个mini作业项目,用于入门非常合适,刨除了繁琐的部分,保留了最关键.基本的步骤,能够对机器学习基本流程有一个最清晰 ...
- 机器学习实战二:波士顿房价预测 Boston Housing
波士顿房价预测 Boston housing 这是一个波士顿房价预测的一个实战,上一次的Titantic是生存预测,其实本质上是一个分类问题,就是根据数据分为1或为0,这次的波士顿房价预测更像是预测一 ...
- 使用pmml跨平台部署机器学习模型Demo——房价预测
基于房价数据,在python中训练得到一个线性回归的模型,在JavaWeb中加载模型完成房价预测的功能. 一. 训练.保存模型 工具:PyCharm-2017.Python-39.sklearn2 ...
- Python——决策树实战:california房价预测
Python——决策树实战:california房价预测 编译环境:Anaconda.Jupyter Notebook 首先,导入模块: import pandas as pd import matp ...
- 掌握Spark机器学习库-07.14-保序回归算法实现房价预测
数据集 house.csv 数据集概览 代码 package org.apache.spark.examples.examplesforml import org.apache.spark.ml.cl ...
- python实现机器学习笔记
#课程链接 https://www.imooc.com/video/20165 一.机器学习介绍以及环境部署 1.机器学习介绍及其原理 1)什么是人工智能 人工智能就其本质而言,是机器对人的思维信息过 ...
随机推荐
- 组合数学练习题(一)——Chemist
题意: 从 n 个人中选出不超过 k 个人,再在选出的人中选出一些人成为队员,再在队员中选一名队长,求不同的方案数.答案 mod 8388608. 共有T组询问,每次给你n和k.T ≤ 10^4 k ...
- linux下创建用户及组
linux下创建用户及组: 1.创建组 groupadd 组名 2.创建用户,并将用户添加到组 useradd 用户名 -g 组名 3.更改用户的密码 password 用户名 4.修改目录 ...
- 数据结构 - 链队列的实行(C语言)
数据结构-链队列的实现 1 链队列的定义 队列的链式存储结构,其实就是线性表的单链表,只不过它只能尾进头出而已, 我们把它简称为链队列.为了操作上的方便,我们将队头指针指向链队列的头结点,而队尾指针指 ...
- 浅谈算法——线段树之Lazy标记
一.前言 前面我们已经知道线段树能够进行单点修改和区间查询操作(基本线段树).那么如果需要修改的是一个区间该怎么办呢?如果是暴力修改到叶子节点,复杂度即为\(O(nlog n)\),显然是十分不优秀的 ...
- iOS判断输入的字符串是否是纯数字
主要用于判断输入到TextField的内容是不是数字,比如需要输入电话号码的时候. 网上查看了一些资料,一般都是通过协议. 以下内容来自:http://www.2cto.com/kf/201404/2 ...
- jsp错误处理
jsp提供了很好的错误能力,除了在java代码中可以使用try语句,还可以指定一个特殊页面,当页面应用遇到未捕获的异常时,用户将看到一个精心设计的网页解释发生了什么,而不是一个用户无法理解的错误信息. ...
- scala学习笔记4:函数和闭包
以下主要记录的是看完scala in programming这本书functions and closures(第八章)后的要点总结. 1,函数可以存在的地方:函数方法,嵌套函数. 2,关于funct ...
- spring常用注解笔记
spring常用注解解释: 1. Mybatis的映射文件xxxMapper.xml中resultMap标签的作用 resultMap标签是为了映射select查询出来结果的集合,其主要 作用是将实体 ...
- JS中的对象之原型
对象 ECMAScript做为一个高度抽象的面向对象语言,是通过_对象_来交互的.即使ECMAScript里边也有_基本类型_,但是,当需要的时候,它们也会被转换成对象. 一个对象就是一个属性集合,并 ...
- RegisterClientScriptBlock和RegisterStartupScript的区别
RegisterClientScriptBlock在 Page 对象的 元素的开始标记后立即发出客户端脚本,RegisterStartupScript则是在Page 对象的 元素的结束标记之前发出该脚 ...