Problem Description

Given a number N, you are asked to count the number of integers between A and B inclusive which are relatively prime to N.
Two integers are said to be co-prime or relatively prime if they have no common positive divisors other than 1 or, equivalently, if their greatest common divisor is 1. The number 1 is relatively prime to every integer.

Input

The first line on input contains T (0 < T <= 100) the number of test cases, each of the next T lines contains three integers A, B, N where (1 <= A <= B <= 1015) and (1 <=N <= 109).

Output

For each test case, print the number of integers between A and B inclusive which are relatively prime to N. Follow the output format below.

Sample Input

2
1 10 2
3 15 5

Sample Output

Case #1: 5
Case #2: 10

Hint

In the first test case, the five integers in range [1,10] which are relatively prime to 2 are {1,3,5,7,9}.

解题思路:求区间[A,B]与N互质的数的个数,我们可以从其对立面来考虑:分别求区间[1,A-1]、区间[1,B]中与N不互质的数的个数为num1、num2,那么区间[A,B]与N互质的数的个数就有(B-num2)-(A-1-num1)。怎么求出区间[1,X]与N不互质的数的个数呢?先分解出N的所有素因子,然后用这些素因子来筛选计算出区间[1,X]中与N不互质的数的个数即X/p_i(p_i为素因子,X为区间右端点),因为任何一个不小于2的数都能表示成若干个素数的乘积,这样就得到区间[1,X]中是素因子的倍数的个数,但为了不重复和不遗漏计数,应采用容斥定理,公式:,其中选择某几个素因子可以看成是二进制对应bit上的1,如果当前所选个数为奇数,符号为正,否则为负。注意:容斥计数x/p_i中p_i是几个素数的最小公倍数,由于素数之间是互质的,所以可以直接相乘起来作为其最小公倍数。
AC代码:
 #include<bits/stdc++.h>
using namespace std;
typedef long long LL;
int t,cnt,prime[];LL a,b,n;
LL solve(LL x){//求与n不互质的总个数
int num;LL ans=,tp;
for(int i=;i<(<<cnt);++i){//用二进制来表示每个质因子是否被使用,即有2^cnt-1种可能,此时cnt较小,题目中1e9最多也就8个素因子,二进制优化
tp=,num=;
for(int j=;j<cnt;++j)
if(i&(<<j))num++,tp*=prime[j];//表示选择哪几个素因子
if(num&)ans+=x/tp;//奇加
else ans-=x/tp;//偶减
}
return x-ans;
}
int main(){
while(~scanf("%d",&t)){
for(int i=;i<=t;++i){
scanf("%lld%lld%lld",&a,&b,&n);cnt=;
for(LL j=;j*j<=n;++j){//求出n内的所有质因子
if(n%j==){
prime[cnt++]=j;
while(n%j==)n/=j;
}
}
if(n>)prime[cnt++]=n;
printf("Case #%d: %lld\n",i,solve(b)-solve(a-));//区间差
}
}
return ;
}

题解报告:hdu 4135 Co-prime(容斥定理入门)的更多相关文章

  1. HDU 1695 GCD(容斥定理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  2. HDU 4135 Co-prime(容斥:二进制解法)题解

    题意:给出[a,b]区间内与n互质的个数 思路:如果n比较小,我们可以用欧拉函数解决,但是n有1e9.要求区间内互质,我们可以先求前缀内互质个数,即[1,b]内与n互质,求互质,可以转化为求不互质,也 ...

  3. HDU 4135 Co-prime(容斥+数论)

    Co-prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  4. BZOJ2839 : 集合计数 (广义容斥定理)

    题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的 ...

  5. HDU 4135 Co-prime 欧拉+容斥定理

    Co-prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  6. HDU - 4135 Co-prime 容斥定理

    题意:给定区间和n,求区间中与n互素的数的个数, . 思路:利用容斥定理求得先求得区间与n互素的数的个数,设表示区间中与n互素的数的个数, 那么区间中与n互素的数的个数等于.详细分析见求指定区间内与n ...

  7. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  8. hdu 6053 trick gcd 容斥

    http://acm.hdu.edu.cn/showproblem.php?pid=6053 题意:给定一个数组,我们定义一个新的数组b满足bi<ai 求满足gcd(b1,b2....bn)&g ...

  9. HDU 2841 Visible Trees(容斥定理)

    Visible Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) To ...

随机推荐

  1. EF(Entity Framework)通用DBHelper通用类,增删改查以及列表

    其中 通用类名:DBhelper 实体类:UserInfo 1 //新增 2 DBHelper<UserInfo> dbhelper = new DBHelper<UserInfo& ...

  2. LiberOJ#6178. 「美团 CodeM 初赛 Round B」景区路线规划 概率DP

    题意 游乐园被描述成一张 n 个点,m 条边的无向图(无重边,无自环).每个点代表一个娱乐项目,第 i 个娱乐项目需要耗费 ci 分钟的时间,会让小 y 和妹子的开心度分别增加 h1i ,h2i ,他 ...

  3. Provided Maven Coordinates must be in the form 'groupId:artifactId:version'.

    [hadoop@hadoop1 bin]$ ./spark-shell --packages org.mongodb.spark:mongo-spark-connector_2.10-2.2.1 Ex ...

  4. poj 1821 Fence(单调队列优化DP)

    poj 1821 Fence \(solution:\) 这道题因为每一个粉刷的人都有一块"必刷的木板",所以可以预见我们的最终方案里的粉刷匠一定是按其必刷的木板的顺序排列的.这就 ...

  5. UIView局部点击

    今天上班遇到一种情况,需要局部响应点击事件,比如在一个UIImageView中设置一个小圆圈图片,要求点击圆圈里面不响应点击,点击小圆圈外面的部分响应点击.可以通过重写hitTest:withEven ...

  6. java 获取项目根目录

    代码入下: request.getSession().getServletContext().getRealPath(); 这里的getRealPath()括号里面可以输入你想得到的具体目录. 需要注 ...

  7. java 开发面试题小整理(二)

    51.Anonymous Inner Class(匿名内部类)是否可以继承其它类?是否可以实现接口? 答:可以继承其他类或实现其他接口,在Swing编程和Android开发中常用此方式来实现事件监听和 ...

  8. MYSQL进阶学习笔记二:MySQL存储过程和局部变量!(视频序号:进阶_4-6)

    知识点三:MySQL存储过程和局部变量(4,5,6) 存储过程的创建:     创建存储过程的步骤: 首先选中数据库 改变分隔符,不让分号作为执行结束的标记.(通常情况下,改变分隔符命令 DELIMI ...

  9. USACO 回文的路径

    传送门 这道题和传纸条在某些方面上非常的相似.不过这道题因为我们要求回文的路径,所以我们可以从中间一条大对角线出发去向两边同时进行DP. 这里就有了些小小的问题.在传纸条中,两个路径一定是同时处在同一 ...

  10. 【转】Chrome headless 模式

    原文地址: http://www.cnblogs.com/fnng/p/7797839.html 我们在通过Selenium运行自动化测试时,必须要启动浏览器,浏览器的启动与关闭必然会影响执行效率,而 ...