初识

Python中已经有了threading模块,为什么还需要线程池呢,线程池又是什么东西呢?在介绍线程同步的信号量机制的时候,举得例子是爬虫的例子,需要控制同时爬取的线程数,例子中创建了20个线程,而同时只允许3个线程在运行,但是20个线程都需要创建和销毁,线程的创建是需要消耗系统资源的,有没有更好的方案呢?其实只需要三个线程就行了,每个线程各分配一个任务,剩下的任务排队等待,当某个线程完成了任务的时候,排队任务就可以安排给这个线程继续执行。

这就是线程池的思想(当然没这么简单),但是自己编写线程池很难写的比较完美,还需要考虑复杂情况下的线程同步,很容易发生死锁。从Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutorProcessPoolExecutor两个类,实现了对threadingmultiprocessing的进一步抽象(这里主要关注线程池),不仅可以帮我们自动调度线程,还可以做到:

  1. 主线程可以获取某一个线程(或者任务的)的状态,以及返回值。
  2. 当一个线程完成的时候,主线程能够立即知道。
  3. 让多线程和多进程的编码接口一致。

实例

简单使用

from concurrent.futures import ThreadPoolExecutor
import time # 参数times用来模拟网络请求的时间
def get_html(times):
time.sleep(times)
print("get page {}s finished".format(times))
return times executor = ThreadPoolExecutor(max_workers=2)
# 通过submit函数提交执行的函数到线程池中,submit函数立即返回,不阻塞
task1 = executor.submit(get_html, (3))
task2 = executor.submit(get_html, (2))
# done方法用于判定某个任务是否完成
print(task1.done())
# cancel方法用于取消某个任务,该任务没有放入线程池中才能取消成功
print(task2.cancel())
time.sleep(4)
print(task1.done())
# result方法可以获取task的执行结果
print(task1.result()) # 执行结果
# False # 表明task1未执行完成
# False # 表明task2取消失败,因为已经放入了线程池中
# get page 2s finished
# get page 3s finished
# True # 由于在get page 3s finished之后才打印,所以此时task1必然完成了
# 3 # 得到task1的任务返回值
  1. ThreadPoolExecutor构造实例的时候,传入max_workers参数来设置线程池中最多能同时运行的线程数目。
  2. 使用submit函数来提交线程需要执行的任务(函数名和参数)到线程池中,并返回该任务的句柄(类似于文件、画图),注意submit()不是阻塞的,而是立即返回。
  3. 通过submit函数返回的任务句柄,能够使用done()方法判断该任务是否结束。上面的例子可以看出,由于任务有2s的延时,在task1提交后立刻判断,task1还未完成,而在延时4s之后判断,task1就完成了。
  4. 使用cancel()方法可以取消提交的任务,如果任务已经在线程池中运行了,就取消不了。这个例子中,线程池的大小设置为2,任务已经在运行了,所以取消失败。如果改变线程池的大小为1,那么先提交的是task1task2还在排队等候,这是时候就可以成功取消。
  5. 使用result()方法可以获取任务的返回值。查看内部代码,发现这个方法是阻塞的。

as_completed

上面虽然提供了判断任务是否结束的方法,但是不能在主线程中一直判断啊。有时候我们是得知某个任务结束了,就去获取结果,而不是一直判断每个任务有没有结束。这是就可以使用as_completed方法一次取出所有任务的结果。

from concurrent.futures import ThreadPoolExecutor, as_completed
import time # 参数times用来模拟网络请求的时间
def get_html(times):
time.sleep(times)
print("get page {}s finished".format(times))
return times executor = ThreadPoolExecutor(max_workers=2)
urls = [3, 2, 4] # 并不是真的url
all_task = [executor.submit(get_html, (url)) for url in urls] for future in as_completed(all_task):
data = future.result()
print("in main: get page {}s success".format(data)) # 执行结果
# get page 2s finished
# in main: get page 2s success
# get page 3s finished
# in main: get page 3s success
# get page 4s finished
# in main: get page 4s success

as_completed()方法是一个生成器,在没有任务完成的时候,会阻塞,在有某个任务完成的时候,会yield这个任务,就能执行for循环下面的语句,然后继续阻塞住,循环到所有的任务结束。从结果也可以看出,先完成的任务会先通知主线程

map

除了上面的as_completed方法,还可以使用executor.map方法,但是有一点不同。

from concurrent.futures import ThreadPoolExecutor
import time # 参数times用来模拟网络请求的时间
def get_html(times):
time.sleep(times)
print("get page {}s finished".format(times))
return times executor = ThreadPoolExecutor(max_workers=2)
urls = [3, 2, 4] # 并不是真的url for data in executor.map(get_html, urls):
print("in main: get page {}s success".format(data))
# 执行结果
# get page 2s finished
# get page 3s finished
# in main: get page 3s success
# in main: get page 2s success
# get page 4s finished
# in main: get page 4s success

使用map方法,无需提前使用submit方法,map方法与python标准库中的map含义相同,都是将序列中的每个元素都执行同一个函数。上面的代码就是对urls的每个元素都执行get_html函数,并分配各线程池。可以看到执行结果与上面的as_completed方法的结果不同,输出顺序和urls列表的顺序相同,就算2s的任务先执行完成,也会先打印出3s的任务先完成,再打印2s的任务完成。

wait

wait方法可以让主线程阻塞,直到满足设定的要求。

from concurrent.futures import ThreadPoolExecutor, wait, ALL_COMPLETED, FIRST_COMPLETED
import time # 参数times用来模拟网络请求的时间
def get_html(times):
time.sleep(times)
print("get page {}s finished".format(times))
return times executor = ThreadPoolExecutor(max_workers=2)
urls = [3, 2, 4] # 并不是真的url
all_task = [executor.submit(get_html, (url)) for url in urls]
wait(all_task, return_when=ALL_COMPLETED)
print("main")
# 执行结果
# get page 2s finished
# get page 3s finished
# get page 4s finished
# main

wait方法接收3个参数,等待的任务序列、超时时间以及等待条件。等待条件return_when默认为ALL_COMPLETED,表明要等待所有的任务都结束。可以看到运行结果中,确实是所有任务都完成了,主线程才打印出main。等待条件还可以设置为FIRST_COMPLETED,表示第一个任务完成就停止等待。

源码分析

cocurrent.future模块中的future的意思是未来对象,可以把它理解为一个在未来完成的操作,这是异步编程的基础 。在线程池submit()之后,返回的就是这个future对象,返回的时候任务并没有完成,但会在将来完成。也可以称之为task的返回容器,这个里面会存储task的结果和状态。那ThreadPoolExecutor内部是如何操作这个对象的呢?

下面简单介绍ThreadPoolExecutor的部分代码:

  1. init方法

    init方法中主要重要的就是任务队列和线程集合,在其他方法中需要使用到。

  2. submit方法

     

    submit中有两个重要的对象,_base.Future()_WorkItem()对象,_WorkItem()对象负责运行任务和对future对象进行设置,最后会将future对象返回,可以看到整个过程是立即返回的,没有阻塞。

  3. adjust_thread_count方法

     

    这个方法的含义很好理解,主要是创建指定的线程数。但是实现上有点难以理解,比如线程执行函数中的weakref.ref,涉及到了弱引用等概念,留待以后理解。

  4. _WorkItem对象

     

    _WorkItem对象的职责就是执行任务和设置结果。这里面主要复杂的还是self.future.set_result(result)

  5. 线程执行函数--_worker

    这是线程池创建线程时指定的函数入口,主要是从队列中依次取出task执行,但是函数的第一个参数还不是很明白。留待以后。

总结

  • future的设计理念很棒,在线程池/进程池和携程中都存在future对象,是异步编程的核心。
  • ThreadPoolExecutor 让线程的使用更加方便,减小了线程创建/销毁的资源损耗,无需考虑线程间的复杂同步,方便主线程与子线程的交互。
  • 线程池的抽象程度很高,多线程和多进程的编码接口一致。

未完成

  • 对future模块的理解。
  • weakref.ref是什么?
  • 线程执行函数入口_worker的第一个参数的意思。

参考

  1. Python并发编程之线程池/进程池
  2. Python3高级编程和异步IO并发编程

[python] ThreadPoolExecutor线程池的更多相关文章

  1. [python] ThreadPoolExecutor线程池 python 线程池

    初识 Python中已经有了threading模块,为什么还需要线程池呢,线程池又是什么东西呢?在介绍线程同步的信号量机制的时候,举得例子是爬虫的例子,需要控制同时爬取的线程数,例子中创建了20个线程 ...

  2. Python ThreadPoolExecutor 线程池导致内存暴涨

    背景 在有200W的任务需要取抓取的时候,目前采用的是线程池去抓取,最终导致内存暴涨. 原因 Threadpoolexcutor默认使用的是无界队列,如果消费任务的速度低于生产任务,那么会把生产任务无 ...

  3. 13.ThreadPoolExecutor线程池之submit方法

    jdk1.7.0_79  在上一篇<ThreadPoolExecutor线程池原理及其execute方法>中提到了线程池ThreadPoolExecutor的原理以及它的execute方法 ...

  4. ThreadPoolExecutor 线程池的源码解析

    1.背景介绍 上一篇从整体上介绍了Executor接口,从上一篇我们知道了Executor框架的最顶层实现是ThreadPoolExecutor类,Executors工厂类中提供的newSchedul ...

  5. j.u.c系列(01) ---初探ThreadPoolExecutor线程池

    写在前面 之前探索tomcat7启动的过程中,使用了线程池(ThreadPoolExecutor)的技术 public void createExecutor() { internalExecutor ...

  6. Python的线程池实现

    # -*- coding: utf-8 -*- #Python的线程池实现 import Queue import threading import sys import time import ur ...

  7. Java并发——ThreadPoolExecutor线程池解析及Executor创建线程常见四种方式

    前言: 在刚学Java并发的时候基本上第一个demo都会写new Thread来创建线程.但是随着学的深入之后发现基本上都是使用线程池来直接获取线程.那么为什么会有这样的情况发生呢? new Thre ...

  8. ThreadPoolExecutor 线程池

    TestThreadPoolExecutorMain package core.test.threadpool; import java.util.concurrent.ArrayBlockingQu ...

  9. 十、自定义ThreadPoolExecutor线程池

    自定义ThreadPoolExecutor线程池 自定义线程池需要遵循的规则 [1]线程池大小的设置 1.计算密集型: 顾名思义就是应用需要非常多的CPU计算资源,在多核CPU时代,我们要让每一个CP ...

随机推荐

  1. response对象设置输出缓冲大小

    response对象设置输出缓冲大小 制作人:全心全意 通常情况下,服务器要输出到客户端的内容不会直接写到客户端,而是先写到一个输出缓冲区,在计算机术语中,缓冲区被定义为暂时放置输入或输出资料的内存. ...

  2. change legend layout from 'vertical' to 'horizontal' in Paraview

    ********** # get color legend/bar for 'vLUT' in view 'renderView1'vLUTColorBar = GetScalarBar(vLUT, ...

  3. 以位为单位存储标志-共用体-union

    一.程序的结构如下: typedef union _KEYST     {         struct         {             uint8 Key1_Flag :1;//表示第0 ...

  4. idea 类图显示

    不得不说idea java开发的神器啊,免去了自己画图的很多工作量. 打开类图快捷键:Ctrl+Alt+Shift+U

  5. 在此计算机中仅有部分visual studio2010产品已升级到SP1,只有全部升级,产品才能正常运行

    先说废话: 本人机子刚装系统Win10 专业版 1709 开始安装vs2010的时候中途报错了,有一个什么驱动不兼容,被我给关闭了,继续安装完,然后找不到vs的启动快捷方式,开始里面没有,于是我开始修 ...

  6. 【网络流24题】最长k可重区间集问题(费用流)

    [网络流24题]最长k可重区间集问题 [问题分析] 最大权不相交路径问题,可以用最大费用最大流解决. [建模方法] 方法1 按左端点排序所有区间,把每个区间拆分看做两个顶点<i.a>< ...

  7. Parallelized coherent read and writeback transaction processing system for use in a packet switched cache coherent multiprocessor system

    A multiprocessor computer system is provided having a multiplicity of sub-systems and a main memory ...

  8. Quartz.Net 使用心得(二)

    工作中需要做一个简易的Cron字符串生成器,并且要获取生成的Cron后面10次的触发时间来验证. 此问题困扰了我很久时间,CSDN上有一个Java版本的,本人菜鸟,想移植到C#中,语法上怎么也不通过. ...

  9. 内核信号处理 & CPU8个通用寄存器

    内核信号处理参考: http://www.spongeliu.com/165.html 信号本质上是在软件层次上对中断机制的一种模拟(注意区分中断.异常.信号),其主要有以下几种来源: 程序错误:除零 ...

  10. Neutron中的网络I/O虚拟化

    为了提升网络I/O性能.虚拟化的网络I/O模型也在不断的演化: 1,全虚拟化网卡(emulation).如VMware中的E1000用来仿真intel 82545千兆网卡,它的功能更完备,如相比一些半 ...