摘自[3D数学基础: 图形与游戏开发]

考虑在3D中两条以参数形式定义的射线:

\(\vec{r_1}(t_1)=\vec{p_1}+t_1\vec{d_1}\)
\(\vec{r_2}(t_2)=\vec{p_2}+t_2\vec{d_2}\)

我们能够解得它们的交点。暂时先不考虑\(t_1,t_2\)的取值范围。因此,我们考虑的是无限长的射线;同样,向量\(\vec{d_1},\vec{d_2}\)也不必是单位向量。如果这两条射线在一个平面中,那么和前一节的情况一样,也存在有一种可能性:

  • 两条射线交于一点;
  • 两条射线平行,没有交点;
  • 两条射线重合,有无限多交点。

在3D中,还有第四种可能性:两条射线不在一个平面中。

下面演示如何解得交点处的\(t_1,t_2\):

\(\vec{r_1}(t_1)=\vec{r_2}(t_2)\)
\(\Rightarrow \vec{p_1}+t_1\vec{d_1}=\vec{p_2}+t_2\vec{d_2}\)
\(\Rightarrow t_1\vec{d_1}=\vec{p_2}+t_2\vec{d_2}-\vec{p_1}\)
\(\Rightarrow (t_1\vec{d_1})\times\vec{d_2} =(\vec{p_2}+t_2\vec{d_2}-\vec{p_1})\times\vec{d_2}\)
\(\Rightarrow t_1(\vec{d_1}\times\vec{d_2}) =t_2(\vec{d_2}\times\vec{d_2})+(\vec{p_2}-\vec{p_1})\times\vec{d_2}\)
\(\Rightarrow t_1(\vec{d_1}\times\vec{d_2}) =t_2\vec{0}+(\vec{p_2}-\vec{p_1})\times\vec{d_2}\)
\(\Rightarrow t_1(\vec{d_1}\times\vec{d_2})\cdot(\vec{d_1}\times\vec{d_2}) =(\vec{p_2}-\vec{p_1})\times\vec{d_2}\cdot(\vec{d_1}\times\vec{d_2})\)
\(\Rightarrow t_1 =\cfrac{(\vec{p_2}-\vec{p_1})\times\vec{d_2}\cdot(\vec{d_1}\times\vec{d_2})}{(\vec{d_1}\times\vec{d_2})\cdot(\vec{d_1}\times\vec{d_2})}\)
\(\Rightarrow t_1 =\cfrac{(\vec{p_2}-\vec{p_1})\times\vec{d_2}\cdot(\vec{d_1}\times\vec{d_2})}{\Vert\vec{d_1}\times\vec{d_2}\Vert^2}\)

也可以用类似的方法求出\(t_2\):

\(t_2 =\cfrac{(\vec{p_1}-\vec{p_2})\times\vec{d_1}\cdot(\vec{d_2}\times\vec{d_1})}{\Vert\vec{d_2}\times\vec{d_1}\Vert^2}\)

\(\Rightarrow t_2 =\cfrac{(\vec{p_2}-\vec{p_1})\times\vec{d_1}\cdot(\vec{d_1}\times\vec{d_2})}{\Vert\vec{d_1}\times\vec{d_2}\Vert^2}\)

如果两条射线平行或重合,\(\vec{d_1},\vec{d_2}\)的叉乘为零,所以上面两个等式的分母都为零。如果两条射线不在一个平面内,那么\(\vec{r_1}(t_1),\vec{r_2}(t_2)\)是相距最近的点。通过检查\(\vec{r_1}(t_1),\vec{r_2}(t_2)\)间的距离即可确定两条射线相交的情况。当然,在实践中,因为浮点数的精度问题,精确的相交很少出现,这时就需要用到一个偏差值。

上面的讨论假设没有限定\(t_1,t_2\)的取值范围,如果射线的长度有限(或只沿一个方向沿伸),在计算出\(t_1,t_2\)后,还应作适当的边界检测。

在3D中两条射线的相交性检测的更多相关文章

  1. AABB和平面的相交性检测

    [AABB和平面的相交性检测]

  2. SqlServer表中两条全然同样的记录,怎样删除当中1条

    描写叙述:表无主键ID,误插入两遍数据,怎样删除内容同样的记录,而仅仅留下1条. SELECT DISTINCT * INTO #temp FROM grade; DROP TABLE grade; ...

  3. C# 判断两条直线是否相交

    直接上代码,过程不复杂 /// <summary> /// 判断两条线是否相交 /// </summary> /// <param name="a"& ...

  4. cocos2d-x 判断两条直线是否相交

    bool GraphicsUtil::linesCross(b2Vec2 v0, b2Vec2 v1, b2Vec2 t0, b2Vec2 t1, b2Vec2 &intersectionPo ...

  5. 【sql】mysql数据库做两条数据替换的操作,不使用第三方变量

    需求: 1.将数据库中两条数据中的唯一约束列  做值的替换 原始思想: 将两条数据查出来,在程序中设置第三方变量,进行两条数据的替换,然后将原始两条数据删除,将新的两条替换后的数据插入. 新思想: 1 ...

  6. [SQL]开启事物,当两条插入语句有出现错误的时候,没有错误的就插入到表中,错误的语句不影响到正确的插入语句

    begin transaction mustt insert into student values(,'kkk','j大洒扫','j','djhdjh') insert into student v ...

  7. 关于Unity中NGUI的3D角色血条的实现

    首先要到Unity的Assets Store里面去下载一个扩展的Package叫NGUI HUD Text v1.13(81),注意如果没有安装NGUI就必须先安装NGUI插件,否则会用不了,因为HU ...

  8. c编程:求出4&#215;4矩阵中最大和最小元素值及其所在行下标和列下标,求出两条主对角线元素之和。

    //求出4×4矩阵中最大和最小元素值及其所在行下标和列下标,求出两条主对角线元素之和 #include <stdio.h> int main() { int sum=0; int max, ...

  9. 一条SQL语句查询两表中两个字段

    首先描述问题,student表中有字段startID,endID.garde表中的ID需要对应student表中的startID或者student表中的endID才能查出grade表中的name字段, ...

随机推荐

  1. Python学习——集合

    集合 python中的集合和数学上集合具有基本相同的性质,此处不再赘述. 1.创建集合的两种方法 #直接创建 num={1,2,3,4,5} #利用set方法创建 num1=set([1,2,3,4, ...

  2. 关于python字典中文显示的处理办法

    最近工作中遇到字典包含中文,显示\uxxxx的问题,怎么转换都无法输入正常的中文:{"gc": "\u4eba\u751f\u7f8e\u597d", &quo ...

  3. PAT 1085 PAT单位排行

    每次 PAT 考试结束后,考试中心都会发布一个考生单位排行榜.本题就请你实现这个功能. 输入格式: 输入第一行给出一个正整数 N(≤10^5),即考生人数.随后 N 行,每行按下列格式给出一个考生的信 ...

  4. [bzoj3668][Noi2014]起床困难综合症_暴力

    起床困难综合征 bzoj-3668 Noi-2014 题目大意:题目链接. 注释:略. 想法:Noi考这题...联赛T1难度.... 我们将每个门上的数二进制拆分. 发现:当前位的操作可能直接确定了当 ...

  5. Springmvc 一个简单的管理系统 我所遇到的坑1(持续更新)

    前言 好久没有用springmvc写项目了,抽时间写一个简单的springmvc项目 是什么(what)为什么(why)怎么做(how) 1.读书破万卷下笔如有神(理清思路,知识储备和前期整理) 2. ...

  6. pt工具加字段脚本

    #!/bin/bashcnn_db=$1table=$2alter_conment=$3 cnn_host='192.168.10.14'cnn_user='root'cnn_pwd='123456' ...

  7. BZOJ(6) 1084: [SCOI2005]最大子矩阵

    1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3566  Solved: 1785[Submit][Sta ...

  8. Servlet监听器(Listener)实例

    以下内容是翻译自http://www.journaldev.com/1945/servletcontextlistener-servlet-listener-example: 说明:web.xml的加 ...

  9. MyBatis3-示例工程

    一.准备工作: 0.新建QuitStart类型POM项目(即Application),Java Build Path为JDK1.8,Java Compiler为1.8,MySQL为5.5.38,数据库 ...

  10. java String长度与varchar长度匹配理解(字符和字节长度理解)

    java String长度与varchar长度匹配理解(字符和字节长度理解) string中的length()长度,返回的是char的数量,每个char可以存储世界上任何类型的文字和字符,一个char ...