BZOJ 2179 FFT快速傅立叶 ——FFT
【题目分析】
快速傅里叶变换用于高精度乘法。
其实本质就是循环卷积的计算,也就是多项式的乘法。
两次蝴蝶变换。
二进制取反化递归为迭代。
单位根的巧妙取值,是的复杂度成为了nlogn
范德蒙矩阵计算逆矩阵又减轻了拉格朗日插值法的复杂度。
十分神奇。
【代码】
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath> #include <set>
#include <map>
#include <string>
#include <algorithm>
#include <vector>
#include <iostream>
#include <queue> using namespace std; #define maxn 200005
#define Complex cp
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define mlog 16
#define inf (0x3f3f3f3f) int read()
{
int x=0,f=1; char ch=getchar();
while (ch<'0'||ch>'9') {if (ch=='-') f=-1; ch=getchar();}
while (ch>='0'&&ch<='9') {x=x*10+ch-'0'; ch=getchar();}
return x*f;
} struct cp{
double x,y;//虚数可表示为 x+y*i i^2=-1
cp operator + (cp a) {return (cp){x+a.x,y+a.y};}
cp operator - (cp a) {return (cp){x-a.x,y-a.y};}
cp operator * (cp a) {return (cp){x*a.x-y*a.y,x*a.y+y*a.x};}
}a[maxn],b[maxn],c[maxn]; double pi=acos(-1.0); // π
int n,m,rev[maxn],len,ans[maxn];
char s[maxn]; void FFT(Complex * x,int n,int f)
{
F(i,0,n-1) if (rev[i]>i) swap(x[rev[i]],x[i]); //构造迭代的形式
for (int m=2;m<=n;m<<=1)
{
Complex wn=(Complex){cos(2.0*pi/m*f),sin(2.0*pi/m*f)}; //当前的主单位根
for (int i=0;i<n;i+=m)
{
Complex w=(Complex){1.0,0};
for (int j=0;j<(m>>1);++j)
{
Complex u=x[i+j],v=x[i+j+(m>>1)]*w;//计算对应的多项式的值
x[i+j]=u+v; x[i+j+(m>>1)]=u-v;
w=w*wn;//在复数域中旋转一个角度
}
}
}
} int main()
{
n=read();
scanf("%s",s); F(i,0,n-1) a[i].x=s[n-1-i]-'0';
scanf("%s",s); F(i,0,n-1) b[i].x=s[n-1-i]-'0';
m=1; n=2*n-1;
while (m<=n) m<<=1,len++; n=m;
F(i,0,n-1)
{
int t=i,ret=0;
F(j,1,len) ret<<=1,ret|=t&1,t>>=1;
rev[i]=ret;
}//二进制翻转,便于化分治为循环迭代
FFT(a,n,1); FFT(b,n,1); //FFT
F(i,0,n-1) c[i]=a[i]*b[i];
FFT(c,n,-1); //IFFT
F(i,0,n-1) ans[i]=(c[i].x/n)+0.5;//精度QAQ
F(i,0,n-1) ans[i+1]+=ans[i]/10,ans[i]%=10;//进位QwQ
n++;
while (!ans[n]&&n) n--;
D(i,n,0) printf("%d",ans[i]);
}
BZOJ 2179 FFT快速傅立叶 ——FFT的更多相关文章
- 【BZOJ 2179】 2179: FFT快速傅立叶 (FFT)
2179: FFT快速傅立叶 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 3308 Solved: 1720 Description 给出两个n位 ...
- bzoj 2179: FFT快速傅立叶 -- FFT
2179: FFT快速傅立叶 Time Limit: 10 Sec Memory Limit: 259 MB Description 给出两个n位10进制整数x和y,你需要计算x*y. Input ...
- 【bzoj2179】FFT快速傅立叶 FFT模板
2016-06-01 09:34:54 很久很久很久以前写的了... 今天又比较了一下效率,貌似手写复数要快很多. 贴一下模板: #include<iostream> #include& ...
- bzoj 2179 FFT快速傅立叶 —— FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2179 默写板子,注释的是忘记的地方. 代码如下: #include<iostream& ...
- BZOJ2179:FFT快速傅立叶(FFT)
Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. Output 输出 ...
- 【bzoj2179】FFT快速傅立叶 FFT
题目描述 给出两个n位10进制整数x和y,你需要计算x*y. 输入 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. 输出 输出一行,即x*y的结果. 样例 ...
- BZOJ2179: FFT快速傅立叶 FFT实现高精度乘法
Code: #include <cstdio> #include <algorithm> #include <cmath> #include <cstring ...
- BZOJ 2179: FFT快速傅立叶
2179: FFT快速傅立叶 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2923 Solved: 1498[Submit][Status][Di ...
- 【BZOJ2179】FFT快速傅立叶
[BZOJ2179]FFT快速傅立叶 Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位 ...
随机推荐
- How to install Eclipse?
http://askubuntu.com/questions/26632/how-to-install-eclipse How to install Eclipse? up vote113down v ...
- SQL还原数据库
还原一个备份数据库的经历. 首先,手头上有工程文件及相应的数据库的备份. 步骤: 1.在工程文件里找到配置文件,我这个是在bin目录里找到config.ini 2.双击打开它,里面有一些数据库的相关信 ...
- flask--Django 基本使用
#导入flaskfrom flask import Flask #创建应用 app = Flask(__name__) #创建根路径视图 @app.route('/') def hello_world ...
- 带你进入Angular js的大门
首先需要指出什么是angular js,其实说白了angular js就是Javascript的一个类库,我们使用这个类库可以很容易的创建web页面.双向绑定是angular js其中的一个重要特征, ...
- 两种常见JS面向象写法
基于构造函数 function Circle(r) { this.r = r; } Circle.PI = 3.14159; Circle.prototype.area = function() { ...
- grep-sed命令用法:
用户切换 su username:非登录式切换 su - username:登录式切换 su -l username:登录式切换 su username -c COMMAND echo -n ...
- http常用状态吗以及分别代表什么意思?
http常用状态码: 状态码 定义 说明 1xx 信息 街道请求继续处理 2xx 成功 成功的收到.理解.接受 3xx 重定向 浏览器需要执行某些特殊处理一完成请求 4xx 客户端错误 请求的语法有问 ...
- LeetCode 字符串的排列
给定两个字符串 s1 和 s2,写一个函数来判断 s2 是否包含 s1 的排列. 换句话说,第一个字符串的排列之一是第二个字符串的子串. 示例1: 输入: s1 = "ab" s2 ...
- 【贪心】bzoj1045: [HAOI2008] 糖果传递
很妙的贪心思考过程 Description 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1. Input 第一行一个正整数nn<=1'000'0 ...
- [LUOGU] P2759 奇怪的函数
题目描述 使得 x^x x x 达到或超过 n 位数字的最小正整数 x 是多少? 输入输出格式 输入格式: 一个正整数 n 输出格式: 使得 x^xx x 达到 n 位数字的最小正整数 x 输入输出样 ...