//题目大意:输入一个n值问洗牌n-1次后是不是会变成初始状态(Jimmy-number),从案例可看出牌1的位置变化为2^i%n,所以最终判断2^(n-1)=1(mod n)是否成立
#include<iostream>
#include<cstring>
#include<cmath>
#include<cstdio>
using namespace std; long long Montgomery(long long a,long long b,long long c)
{
long long t=;
while(b)
{
if(b%)
t=t*a%c;
b/=;
a=a*a%c;
}
return t;
} int main()
{
long long n,d;
while(cin>>n && n!=-)
{
d=Montgomery(,n-,n);
if(d==)
printf("%lld is a Jimmy-number\n",n);
else printf("%lld is not a Jimmy-number\n",n);
}
return ;
}

uva 10710 快速幂取模的更多相关文章

  1. UVa 11582 (快速幂取模) Colossal Fibonacci Numbers!

    题意: 斐波那契数列f(0) = 0, f(1) = 1, f(n+2) = f(n+1) + f(n) (n ≥ 0) 输入a.b.n,求f(ab)%n 分析: 构造一个新数列F(i) = f(i) ...

  2. UVA 11609 - Teams 组合、快速幂取模

    看题传送门 题目大意: 有n个人,选一个或者多个人参加比赛,其中一名当队长,如果参赛者相同,队长不同,也算一种方案.求一共有多少种方案. 思路: 排列组合问题. 先选队长有C(n , 1)种 然后从n ...

  3. 【转】C语言快速幂取模算法小结

    (转自:http://www.jb51.net/article/54947.htm) 本文实例汇总了C语言实现的快速幂取模算法,是比较常见的算法.分享给大家供大家参考之用.具体如下: 首先,所谓的快速 ...

  4. HDU 1061 Rightmost Digit --- 快速幂取模

    HDU 1061 题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果 解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的, 因为会超出数据范围, ...

  5. POJ3641-Pseudoprime numbers(快速幂取模)

    题目大意 判断一个数是否是伪素数 题解 赤果果的快速幂取模.... 代码: #include<iostream> #include<cmath> using namespace ...

  6. 九度OJ 1085 求root(N, k) -- 二分求幂及快速幂取模

    题目地址:http://ac.jobdu.com/problem.php?pid=1085 题目描述: N<k时,root(N,k) = N,否则,root(N,k) = root(N',k). ...

  7. HDU--杭电--4506--小明系列故事——师兄帮帮忙--快速幂取模

    小明系列故事——师兄帮帮忙 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) To ...

  8. CodeForces Round #191 (327C) - Magic Five 等比数列求和的快速幂取模

    很久以前做过此类问题..就因为太久了..这题想了很久想不出..卡在推出等比的求和公式,有除法运算,无法快速幂取模... 看到了 http://blog.csdn.net/yangshuolll/art ...

  9. HDU1013,1163 ,2035九余数定理 快速幂取模

    1.HDU1013求一个positive integer的digital root,即不停的求数位和,直到数位和为一位数即为数根. 一开始,以为integer嘛,指整型就行吧= =(too young ...

随机推荐

  1. Asp.net Mvc 表单验证(气泡提示)

    将ASP.NET MVC或ASP.NET Core MVC的表单验证改成气泡提示: //新建一个js文件(如:jquery.validate.Bubble.js),在所有要验证的页面引用 (funct ...

  2. 浏览器window产生的缓存九种解决办法

    浏览器缓存(Browser Caching)是浏览器端保存数据用于快速读取或避免重复资源请求的优化机制,有效的缓存使用可以避免重复的网络请求和浏览器快速地读取本地数据,整体上加速网页展示给用户.浏览器 ...

  3. POI写入word docx 07 的两种方法

    下载最新jar包:http://poi.apache.org/download.html 以及API 1.写入word 1.1 直接通过XWPFDocument生成 在使用XWPFDocument写d ...

  4. 【DB_MySQL】 limit——取查询结果的子集

    语法:select * from student limit beginIndex,length; 这里结果集的下标同数组一样从0开始,beginIndex表示起始位置,length表示从beginI ...

  5. aggregate和annotate使用

    aggregate和annotate方法的使用场景 Django的aggregate和annotate方法属于高级查询方法,主要用于组合查询,是Django高手们必需要熟练掌握的.当我们需要对查询集( ...

  6. python--进程内容补充

    一. 进程的其他方法 进程id, 进程名字, 查看进程是否活着(is_alive()), terminate()发送结束进程的信号 import time import os from multipr ...

  7. SpringBoot 多线程

    Spring通过任务执行器(TaskExecutor)来实现多线程和并发编程.使用ThreadPoolTaskExecutor可实现一个基于线程池的TaskExecutor.而实际开发中任务一般是非阻 ...

  8. S3C6410串口平台设备注册流程分析

    1.mdesc->map_io() start_kernel -->setup_arch(&command_line); -->paging_init(mdesc); --& ...

  9. cs229_part5

    这部分主要补充一些cs229没涉及到,但是实际上非常重要,而且是实际中真正会用的一些算法,即集成学习. 集成学习 问题背景 既然我们已经知道了很多学习算法,这些算法最终会输出一个结果.能不能把这些结果 ...

  10. PAT Basic 1003

    1003 我要通过! “答案正确”是自动判题系统给出的最令人欢喜的回复.本题属于PAT的“答案正确”大派送 —— 只要读入的字符串满足下列条件,系统就输出“答案正确”,否则输出“答案错误”. 得到“答 ...