BZOJ2741 【FOTILE模拟赛】L 【可持久化trie + 分块】
题目
FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和。
即对于一个询问,你需要求出max(Ai xor Ai+1 xor Ai+2 ... xor Aj),其中l<=i<=j<=r。
为了体现在线操作,对于一个询问(x,y):
l = min ( ((x+lastans) mod N)+1 , ((y+lastans) mod N)+1 ).
r = max ( ((x+lastans) mod N)+1 , ((y+lastans) mod N)+1 ).
其中lastans是上次询问的答案,一开始为0。
输入格式
第一行两个整数N和M。
第二行有N个正整数,其中第i个数为Ai,有多余空格。
后M行每行两个数x,y表示一对询问。
输出格式
共M行,第i行一个正整数表示第i个询问的结果。
输入样例
3 3
1 4 3
0 1
0 1
4 3
输出样例
5
7
7
提示
HINT
N=12000,M=6000,x,y,Ai在signed longint范围内。
题解
区间异或和最大,转化为两个前缀和
多次询问不同区间,用可持久化trie树
但每次要任意选出两个数,而常规的trie树只支持一个数询问区间和它的最大异或值,不能处理区间内任意两个数异或和最大值
何破?
我们不可能每次询问\(O(n^2logn)\)枚举其中一个数
那就预处理!
如果我们能预处理出每个区间异或最大值,就是\(O(n^2logn)\)预处理,\(O(1)\)查询
能不能均摊一下?
分块!
我们只预处理每个块头到其后面所有位置的数异或的最大值
具体的,设\(f[i][j]\)表示\(i\)块开头位置到\(j\)中所有数异或的最大值,记块头为\(u\),则\(f[i][j]\)即为区间\([u,j]\)的答案
算出\(f[i][j]\)只需要枚举每个\(j\)就可以了
具体地,\(f[i][j] = max(f[i][j - 1],query(j,区间[u,j - 1]))\)
那么每次询问的时候,对于\(l\)之后的第一个块头\(u\),可以得到出后面的答案\(f[u][r]\)
所以我们只需要计算区间\([l,u - 1]\)的数与其后面的数的最大异或值
这个区间大小不会超过\(\sqrt{n}\),所以可以直接统计
总的复杂度\(O(n\sqrt{n}logn)\)
【坑点,给出的x,y可能超过int范围】
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define LL long long int
using namespace std;
const int maxn = 12005,Bit = 31,maxm = 6000000,INF = 100000000;
inline LL read(){
LL out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
LL n,m,A[maxn],sum[maxn],bin[40];
LL f[200][maxn],block[maxn],B,lans;
struct trie{
int ch[maxm][2],sum[maxm],rt[maxn],cnt;
int ins(int pre,int x){
int tmp,u;
tmp = u = ++cnt;
for (int i = Bit; i >= 0; i--){
ch[u][0] = ch[pre][0];
ch[u][1] = ch[pre][1];
sum[u] = sum[pre] + 1;
LL t = x & bin[i]; t >>= i;
pre = ch[pre][t];
u = ch[u][t] = ++cnt;
}
sum[u] = sum[pre] + 1;
return tmp;
}
LL query(int u,int v,int x,int dep){
if (dep < 0) return 0;
LL t = x & bin[dep]; t >>= dep;
if (sum[ch[u][t ^ 1]] - sum[ch[v][t ^ 1]])
return bin[dep] + query(ch[u][t ^ 1],ch[v][t ^ 1],x,dep - 1);
return query(ch[u][t],ch[v][t],x,dep - 1);
}
}T;
int main(){
bin[0] = 1; for (int i = 1; i <= Bit; i++) bin[i] = bin[i - 1] << 1;
n = read(); m = read(); B = (int)sqrt(n) + 1;
n++;
for (int i = 2; i <= n; i++) A[i] = read();
for (int i = 1; i <= n; i++){
sum[i] = sum[i - 1] ^ A[i];
T.rt[i] = T.ins(T.rt[i - 1],sum[i]);
block[i] = i / B;
}
for (int i = 1; i <= n; i++){
if (i == 1 || block[i] != block[i - 1]){
int b = block[i];
for (int j = i; j <= n; j++){
f[b][j] = max(f[b][j - 1],T.query(T.rt[j - 1],T.rt[i - 1],sum[j],Bit));
}
}
}
n--;
LL l,r,x,y;
while (m--){
x = read(); y = read();
l = min (((x + lans) % n) + 1, ((y + lans) % n) + 1);
r = max (((x + lans) % n) + 1, ((y + lans) % n) + 1) + 1;
lans = 0;
if (block[l] != block[r]) lans = f[block[l] + 1][r];
for (int i = l; block[i] == block[l] && i < r; i++){
lans = max(lans,T.query(T.rt[r],T.rt[i],sum[i],Bit));
}
printf("%lld\n",lans);
}
return 0;
}
BZOJ2741 【FOTILE模拟赛】L 【可持久化trie + 分块】的更多相关文章
- 【bzoj2741】[FOTILE模拟赛]L 可持久化Trie树+分块
题目描述 FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max(Ai xor Ai+1 xor Ai+2 ... xor A ...
- BZOJ2741 FOTILE模拟赛L(分块+可持久化trie)
显然做个前缀和之后变成询问区间内两个数异或最大值. 一种暴力做法是建好可持久化trie后直接枚举其中一个数查询,复杂度O(nmlogv). 观察到数据范围很微妙.考虑瞎分块. 设f[i][j]为第i个 ...
- BZOJ2741:[FOTILE模拟赛]L
Description FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max(Ai xor Ai+1 xor Ai+2 .. ...
- 【BZOJ2741】【块状链表+可持久化trie】FOTILE模拟赛L
Description FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max(Ai xor Ai+1 xor Ai+2 .. ...
- BZOJ.2741.[FOTILE模拟赛]L(分块 可持久化Trie)
题目链接 首先记\(sum\)为前缀异或和,那么区间\(s[l,r]=sum[l-1]^{\wedge}sum[r]\).即一个区间异或和可以转为求两个数的异或和. 那么对\([l,r]\)的询问即求 ...
- BZOJ 2741: 【FOTILE模拟赛】L(可持久化Trie+分块)
传送门 解题思路 首先求出前缀异或和,那么问题就转化成了区间内选两个数使得其异或和最大.数据范围不是很大考虑分块,设\(f[x][i]\)表示第\(x\)块开头到\(i\)这个位置与\(a[i]\)异 ...
- 【bzoj2741】[FOTILE模拟赛] L
Portal --> bzoj2741 Solution 突然沉迷分块不能自拔 考虑用分块+可持久化trie来解决这个问题 对于每一块的块头\(L\),预处理\([L,i]\)区间内的所有子区间 ...
- bzoj 2741 [FOTILE模拟赛] L
Description 多个询问l,r,求所有子区间异或和中最大是多少 强制在线 Solution 分块+可持久化trie 1.对于每块的左端点L,预处理出L到任意一个i,[L,j] 间所有子区间异或 ...
- 【BZOJ2741】【FOTILE模拟赛】L 分块+可持久化Trie树
[BZOJ2741][FOTILE模拟赛]L Description FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max( ...
- bzoj 2741: 【FOTILE模拟赛】L 分塊+可持久化trie
2741: [FOTILE模拟赛]L Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 1116 Solved: 292[Submit][Status] ...
随机推荐
- sysbench0.5安装和使用介绍
sysbench是一个模块化的.跨平台.多线程基准测试工具,主要用于评估测试各种不同系统参数下的数据库负载情况,sysbench支持MySQL.PostgreSQL.Oracle数据库OLTP测试.它 ...
- 洛谷 P2483 [SDOI2010]魔法猪学院
题目描述 iPig在假期来到了传说中的魔法猪学院,开始为期两个月的魔法猪训练.经过了一周理论知识和一周基本魔法的学习之后,iPig对猪世界的世界本原有了很多的了解:众所周知,世界是由元素构成的:元素与 ...
- ubuntu 14.04 安装npm
1. 安装 sudo apt install nodejs-legacy sudo apt install npm
- Xcode5 如何添加一个Github/Repository 并且Checkout
1. 添加一个Account 也就是添加一个 Repository. In Xcode, choose Xcode > Preferences, and click Accounts. Pre ...
- 如何在vue项目中使用sass(scss)
1.用npm/cnpm/yarn安装sass的依赖包 npm install --save-dev sass-loader npm install --save-dev node-sass 或者: y ...
- 标注偏置问题(Label Bias Problem)和HMM、MEMM、CRF模型比较<转>
转自http://blog.csdn.net/lskyne/article/details/8669301 路径1-1-1-1的概率:0.4*0.45*0.5=0.09 路径2-2-2-2的概率:0. ...
- softmax_loss的归一化问题
cnn网络中,网络更新一次参数是根据loss反向传播来,这个loss是一个batch_size的图像前向传播得到的loss和除以batch_size大小得到的平均loss. softmax_loss前 ...
- 用navcat编写定时任务调用存储过程
最近项目需要改动比较大,数据库结构也有所改变,这时就需要转移旧数据到新库中 第一时间想到的是用代码操作,由于两个库表结构不同,实体什么的得需要重新生成 并编写转移代码,这将是很大的工作量: 然后就想着 ...
- shell脚本,文件里面的英文大小写替换方法。
[root@localhost wyb]# cat daxiaoxie qweBNMacb eeeDFSmkl svdIOPtyu [root@localhost wyb]# cat daxiaoxi ...
- 在Xcode中编辑运行 Python 脚本
http://www.zhihu.com/question/19872198 打开Xcode,File->New->Project选中OS X下的Other点击External Build ...