BZOJ3473 字符串 【广义后缀自动机】
题目
给定n个字符串,询问每个字符串有多少子串(不包括空串)是所有n个字符串中至少k个字符串的子串?
输入格式
第一行两个整数n,k。
接下来n行每行一个字符串。
输出格式
一行n个整数,第i个整数表示第i个字符串的答案。
输入样例
3 1
abc
a
ab
输出样例
6 1 3
提示
对于 100% 的数据,1<=n,k<=105,所有字符串总长不超过105,字符串只包含小写字母。
题解
我们先建一个广义后缀自动机
然后用每个原串在SAM上走,走到的节点就是parent树的叶子节点,将其沿parent边一直往上+1,表示这些节点表示的字符串+1【当然只能加一次,所以再开一个数组cur[]表示加过没有】
处理完后,我们就可以统计答案了
先拓扑排序,设f[]为该位置满足题意的字符串个数,显然如果一个位置累加的字符串>=k,那么该位置表示的至少为\(step[u] - step[pre[u]]\)
但还不完全,父亲的代表的字符串个数同样也符合该点
然后每个串再在SAM上走一遍统计答案即可
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 200005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
string s[maxn];
char ss[maxn];
int ch[maxn][26],pre[maxn],step[maxn],sz[maxn],cnt,last,n,k,cur[maxn];
LL f[maxn];
int ins(int x){
int p = last,np = ++cnt; step[np] = step[p] + 1; last = np;
while (p && !ch[p][x]) ch[p][x] = np,p = pre[p];
if (!p) pre[np] = 1;
else {
int q = ch[p][x];
if (step[q] == step[p] + 1) pre[np] = q;
else {
int nq = ++cnt; step[nq] = step[p] + 1;
for (int i = 0; i < 26; i++) ch[nq][i] = ch[q][i];
pre[nq] = pre[q]; pre[np] = pre[q] = nq;
while (ch[p][x] == q) ch[p][x] = nq,p = pre[p];
}
}
return np;
}
int b[maxn],a[maxn];
LL ans;
void tsort(){
REP(i,cnt) b[step[i]]++;
REP(i,cnt) b[i] += b[i - 1];
for (int i = cnt; i; i--) a[b[step[i]]--] = i;
}
int main(){
n = read(); k = read();
last = cnt = 1;
for (int i = 1; i <= n; i++){
last = 1;
scanf("%s",ss); s[i] = string(ss);
int len = strlen(ss);
for (int i = 0; i < len; i++) ins(ss[i] - 'a');
}
int u;
for (int i = 1; i <= n; i++){
u = 1;
for (int j = 0; j < s[i].length(); j++){
u = ch[u][s[i][j] - 'a'];
for (int p = u; p && cur[p] != i; p = pre[p])
sz[p]++,cur[p] = i;
}
}
tsort();
sz[1] = 0;
for (int i = 1; i <= cnt; i++)
u = a[i],f[u] = f[pre[u]] + (sz[u] >= k ? step[u] - step[pre[u]] : 0);
for (int i = 1; i <= n; i++){
ans = 0; u = 1;
for (int j = 0; j < s[i].length(); j++){
u = ch[u][s[i][j] - 'a'];
ans += f[u];
}
printf("%lld ",ans);
}
return 0;
}
BZOJ3473 字符串 【广义后缀自动机】的更多相关文章
- BZOJ3473 字符串 广义后缀自动机
今天主攻了下SAM 好多东西以前都没理解到 对于这道题 我们建一个自动机存所有串 每个穿last从1开始 对于自动机上每个点额外记一个cnt 表示能匹配到这个点的不同串个数 建完对每个串在自动机上匹配 ...
- 【bzoj3277/bzoj3473】串/字符串 广义后缀自动机
题目描述 字符串是oi界常考的问题.现在给定你n个字符串,询问每个字符串有多少子串(不包括空串)是所有n个字符串中至少k个字符串的子串(注意包括本身). 输入 第一行两个整数n,k.接下来n行每行一个 ...
- BZOJ 3473: 字符串 [广义后缀自动机]
3473: 字符串 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 354 Solved: 160[Submit][Status][Discuss] ...
- BZOJ 3277 串 & BZOJ 3473 字符串 (广义后缀自动机、时间复杂度分析、启发式合并、线段树合并、主席树)
标签那么长是因为做法太多了... 题目链接: (bzoj 3277) https://www.lydsy.com/JudgeOnline/problem.php?id=3277 (bzoj 3473) ...
- 2018.12.22 bzoj3473: 字符串(后缀自动机+启发式合并)
传送门 调代码调的我怀疑人生. 启发式合并用迭代写怎么都跑不过(雾 换成了dfsdfsdfs版本的终于过了233. 题意简述:求给出nnn个字串,对于每个给定的字串求出其有多少个字串在至少kkk个剩下 ...
- BZOJ 3473 字符串 ——广义后缀自动机
这题就比较有趣了. 首先匹配一遍,然后统计子树叶子节点中包含大于等于k的节点个数(HH的项链) 然后就可以搞了. 关于合法的情况数,显然是l[i]-l[fa[i]],然后向下下传即可(YY一下). # ...
- bzoj 3277 串 && bzoj 3473 字符串 && bzoj 2780 [Spoj]8093 Sevenk Love Oimaster——广义后缀自动机
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3277 https://www.lydsy.com/JudgeOnline/problem.p ...
- BZOJ 3926: [Zjoi2015]诸神眷顾的幻想乡 广义后缀自动机 后缀自动机 字符串
https://www.lydsy.com/JudgeOnline/problem.php?id=3926 广义后缀自动机是一种可以处理好多字符串的一种数据结构(不像后缀自动机只有处理一到两种的时候比 ...
- [bzoj3277==bzoj3473]出现k次子串计数——广义后缀自动机+STL
Brief Description 给定n个字符串,对于每个字符串,您需要求出在所有字符串中出现次数大于等于k次的子串个数. Algorithm Design 先建立一个广义后缀自动机,什么是广义后缀 ...
随机推荐
- 设置office首字母不变大小的手段
选项->校对—〉自动更正选项->“自动更正”页,句首字母大写,取消就行了
- sqlite总结1
I Shell下命令行程序CLP I .help II 命令的简写 .e = .quit .s .h = .help II 数据库管理 A 创建数据库 1 CREATE TABLE id_name(i ...
- JS 操作对象 事件 样式
1.获取标记对象 css 1 - class 2 - id 3 - 标记选择器 js 1 - class 2 - id 3 - 标记 4 - name + document.getElementByI ...
- 高效vim插件
目录[-] 高效vim插件 插件管理利器 高效插件集 NerdTree snipMate tagbar jedi-vim eclim c.vim vim-colorschemes vim配置 一个实例 ...
- UVALive 4287 Proving Equivalence (强连通分量)
把证明的关系看出一张图,最终就是要所有的点都在至少一个环中.环的判断和度数有关. 用tarjan找强连通分量,在一个强连通分量点已经等价缩点以后形成一个DAG,计算入度为0的点数a, 出度为0的b,取 ...
- WPF中实现两个窗口之间传值
在使用WPF的时候,我们经常会用到窗体之间传值,下面示例主窗口传值到子窗口,子窗口传值到主窗口的方法. 一.主窗口向子窗口传值 主窗口向子窗口传值主要方法就是在子窗口建立一个接收主窗口值的变量,然后实 ...
- 标注偏置问题(Label Bias Problem)和HMM、MEMM、CRF模型比较<转>
转自http://blog.csdn.net/lskyne/article/details/8669301 路径1-1-1-1的概率:0.4*0.45*0.5=0.09 路径2-2-2-2的概率:0. ...
- POI把html写入word doc文件
直接把Html文本写入到Word文件 获取查看页面的body内容和引用的css文件路径传入到后台. 把对应css文件的内容读取出来. 利用body内容和css文件的内容组成一个标准格式的Html文本. ...
- struts1标签库
Struts提供了五个标签库,即:HTML.Bean.Logic.Template和Nested. HTML标签 : 用来创建能够和Struts 框架和其他相应的HTML 标签交互的HTML 输入表单 ...
- java在线聊天项目0.4版本 制作服务端接收连接,客户端连接功能 新增客户端窗口打开时光标指向下边文本域功能,使用WindowListener监听WindowAdapter
建一个服务端类ChatServer,用于设置端口接收连接 package com.swift; import java.io.IOException; import java.net.ServerSo ...